1) Hedonic regression Methods
享乐回归法
2) back to Eden
回归乐园
3) hedonic approach
享乐方法
1.
it is pionted out that hedonic approach which was developed for solving marginal implict price of amenties may be applied to price urban land.
本文介绍了享乐价格理论的基本模型及享乐价格函数的估计(包括自变量的选择、自变量和因变量资料的收集及函数形式的选择),结合我国的具体情况,讨论了享乐方法的应用可能性。
4) hedonic pricing approach
享乐定价法
1.
Its eminent difference from traditional approaches is that hedonic pricing approach is based on consumer preferences and utilities, regarding realty as a heterogeneous product composed by a series of attributes, and explains the benefits of consumers from a new standpoint, while traditional approaches studies housing marketing from the perspective of supply.
享乐定价法是西方国家房地产研究中的重要方法,它与传统的从供给角度对房地产研究的方法的最大不同,就在于它将房屋看作是由一系列属性构成的异质商品,以消费者效用和偏好作为研究的基础,对房产的定价和消费者从中获得的福利给予了全新的诠释。
5) ridge regression
岭回归法
1.
Simultaneous detection of o-dihydroxybenzene、 m-dihydroxybenzene、p-dihydroxybenzenes by ridge regression;
岭回归法同时测定邻、间、对苯二酚
2.
Multi-factors Empirical analysis of health demands in china——Based on Ridge Regression;
影响我国医疗卫生需求的多因素实证分析——基于岭回归法
3.
The ridge regression method is applied to impedance inversion.
应用岭回归法对波阻抗反演进行了理论和应用研究。
6) regression algorithm
回归算法
1.
A quality evaluation system of examination questions based on the regression algorithm;
基于回归算法的试题质量评价系统研究
2.
The Research of Color Measurement Instrument Based on Regression Algorithm;
基于回归算法的测色仪器研究
3.
Core vector regression algorithm based on enclosing ball with unchanged raclins
基于固定半径包围球的核向量回归算法
补充资料:回归法
通过研究两个或两个以上因素之间的统计相关关系对未来进行预测的方法。是预测技术的一种方法。回归一词最早见于生物学。通过对遗传现象的大量观察统计,人们发现子女身高与父母身高之间有一定关系。平均来看,若父母很高,他们的子女并不会像父母那样高,而父母很矮,他们的子女也不像父母那样矮。这种遗传身高趋于一般的现象,称为回归。后来回归一词被用来描述多个随机变量之间在统计平均意义上趋向于某种较为确定的相互依赖关系,即统计相关关系。通过回归分析找到多个变量之间的统计相关关系,就能建立回归方程式。例如,尳=f(x1,x2),式中y为因变量,尳为对y的估计值;x1和x2为自变量。在对自变量x1和x2控制或预测的基础上,就能对因变量y作出预测。回归法在经济领域中的典型应用是计量经济模型(见计量经济学)。
特点 用回归法进行预测首先要对各个自变量作出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归法预测是有效的,否则就很难应用。为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型。其次,力求掌握较充分的高质量统计数据,再运用一套统计和检验程序,利用数学工具从定量方面计算或改进前两种定性判断。
分类 回归法按照所采用主方程分类。回归方程可以是代数函数、超越函数或它们的混合形式。回归方程为线性的称为线性回归,否则称为非线性回归。自变量只有一个的称为单元回归,多于一个的称为多元回归。
① 单元线性回归 只有一个自变量的线性回归,用于两个因素(如y和x)接近线性关系的场合。相应的回归方程式为 ,式中,而墖和?是分别根据y和x的一组已知观测值(yi,xi)(i=1,...,n)用最小二乘法求出的最小二乘估计值;峹 =lxy/lxx,表示估计值尳t相对于观察值xt的变化率,称为回归系数。,称为x和y的相关系数,它越接近1,x和y的线性相关程度就越大。,称为剩余标准差,它越小,采样点就越接近回归方程式。,称为x的自方差; ,称为y的自方差;,称为x、y的协方差。在简单情况下,回归法就是消耗系数法或生产系数法。例如,峹可以表示生产每吨钢消耗多少度电,一吨化肥能增产多少吨粮食等。这种系数在投入产出表(见投入产出法)中是经常使用的。
② 多元线性回归 用于一个因变量 y同多个自变量x1,x2,..., xm 线性相关的问题。相应的回归方程式为。回归系数峹k(k=0,1,...,m)可由观测值按最小二乘法确定。
③ 非线性回归 分为两类:一类可通过数学变换变成线性回归,如取对数可使乘法变成加法等;另一类可直接进行非线性回归,如多项式回归。
④ 单元多项式回归 因变量同自变量成多项式函数关系的回归法,相应的回归方程为,式中姙k(k=0,1,...,m)可由观察值按最小二乘法确定。
参考书目
N.T.Thomopoulos著,刘涌康等译:《实用预测方法》,上海科技文献出版社,上海,1980。(N.T. Thomopoulos, Applied Forecasting Methods, Prentice-Hall, Englewood Cliffs, 1980.)
特点 用回归法进行预测首先要对各个自变量作出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归法预测是有效的,否则就很难应用。为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型。其次,力求掌握较充分的高质量统计数据,再运用一套统计和检验程序,利用数学工具从定量方面计算或改进前两种定性判断。
分类 回归法按照所采用主方程分类。回归方程可以是代数函数、超越函数或它们的混合形式。回归方程为线性的称为线性回归,否则称为非线性回归。自变量只有一个的称为单元回归,多于一个的称为多元回归。
① 单元线性回归 只有一个自变量的线性回归,用于两个因素(如y和x)接近线性关系的场合。相应的回归方程式为 ,式中,而墖和?是分别根据y和x的一组已知观测值(yi,xi)(i=1,...,n)用最小二乘法求出的最小二乘估计值;峹 =lxy/lxx,表示估计值尳t相对于观察值xt的变化率,称为回归系数。,称为x和y的相关系数,它越接近1,x和y的线性相关程度就越大。,称为剩余标准差,它越小,采样点就越接近回归方程式。,称为x的自方差; ,称为y的自方差;,称为x、y的协方差。在简单情况下,回归法就是消耗系数法或生产系数法。例如,峹可以表示生产每吨钢消耗多少度电,一吨化肥能增产多少吨粮食等。这种系数在投入产出表(见投入产出法)中是经常使用的。
② 多元线性回归 用于一个因变量 y同多个自变量x1,x2,..., xm 线性相关的问题。相应的回归方程式为。回归系数峹k(k=0,1,...,m)可由观测值按最小二乘法确定。
③ 非线性回归 分为两类:一类可通过数学变换变成线性回归,如取对数可使乘法变成加法等;另一类可直接进行非线性回归,如多项式回归。
④ 单元多项式回归 因变量同自变量成多项式函数关系的回归法,相应的回归方程为,式中姙k(k=0,1,...,m)可由观察值按最小二乘法确定。
参考书目
N.T.Thomopoulos著,刘涌康等译:《实用预测方法》,上海科技文献出版社,上海,1980。(N.T. Thomopoulos, Applied Forecasting Methods, Prentice-Hall, Englewood Cliffs, 1980.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条