2) ranking in a competition
竞赛名次
3) competition sequence
竞赛次序
1.
The problem of bye is the present contradiction focus in competition sequence of round robin system, which up to now has not been explained satisfactorily in theory.
:“轮空”问题是现存循环制竞赛次序的矛盾焦点 ,迄今尚未得到完满的理论阐释。
4) mathematics contest
数学竞赛
1.
Application of Gaussian function in the mathematics contest;
高斯函数在数学竞赛中的应用
2.
The purpose of this paper is to investigate some laws and techniques in working on mathematics contest problems by analyzing some cases of combinatorial mathematics which have been generalized.
通过分析和研究若干有关组合数学的数学竞赛题 ,探求数学竞赛题的一些解题规律及技巧 ,并对一些试题进行了推广 。
3.
Mathematics contest is a popular theme in the research on math teaching.
第四部分是本文论述的核心,数学竞赛在思维中所起到的作用应该反映在实际教师教学、学生学习中。
5) mathematics competition
数学竞赛
1.
Geometry construction method in solving mathematics competition problems;
解数学竞赛题中的几何构造方法
2.
According to the discussion of a problem in a mathematics competition, the Ramsey numbers are studied.
通过对一道数学竞赛题的讨论,研究了拉姆赛数,给出了与拉姆赛数相关的4个定理2个推论,最后由实例给出了拉姆赛型问题的一些解法。
3.
Through participating mathematics competitions for Beijing university non-mathematics majors,students of science of the Central University of Nationalities have fostered interest in study,improved teaching of higher mathematics,and raised mathematics competence.
中央民族大学理科学生通过参加北京市大学生非数学专业数学竞赛,培养了学习兴趣,促进了高等数学课程的教学,提高了数学素质。
6) mathematical competition
数学竞赛
1.
Some thoughts on the reforming of mathematical competition and new curricular standards;
数学竞赛改革与新课程标准的若干思考
2.
This paper expounds the problem using an mathematical competition problem.
通过一道竞赛几何问题的一题多解(分析法、对称法、同一法、三角法),力求说明数学竞赛应立足于课本,并从问题解决的过程和结果上初步培养学生学习数学、研究数学的能力。
3.
this paper discusses the argument of mathematical competition, analyzes the some factors of affecting the popularization of mathematical competition in china; it mainly includes the educational views of mathematical competition, Chinese conditional culture and pattern of thinking, it was difficult for us to lessen the effect of mathematical competition.
它在我国中小学数学教育中普遍化和规模化的存在,主要是受到多种内在因素,如数学竞赛的教育观念、教育传统和文化心理,以及思维方式等的钳制。
补充资料:不等重复次数测定
分子式:
CAS号:
性质: 在各实验条件下进行不相同重复次数的测定。这种测定的实验安排比较复杂,但较灵活。
CAS号:
性质: 在各实验条件下进行不相同重复次数的测定。这种测定的实验安排比较复杂,但较灵活。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条