1) Number for positive integral solution
正整数解的个数
1.
Number for positive integral solution of Diophantine equation x1+2x2+3x3+4k4=n is studied.
进一步给出了x1+2x2+3x3+4x4=n的正整数解的个数以及关于一般情形下的不定方程的正整数解的个数的递推关系。
2) the exact number of positive solutions
正解的确切个数
1.
Using the shooting method,we discussed the exact number of positive solutions for a class of boundary value problemx″(t)=λxα(t),t∈(0,1),x(0)=x(1)=0and got the conclusion that:(i) the positive solution is unique if λ<0,α>1 and α≠1;(ii) there has no positive solution if λ<0 and α<-1.
利用打靶法给出了一类边值问题x″(t)=λxα(t),t∈(0,1),x(0)=x(1)=0正解的确切个数,得到了(i)当λ<0,α>-1且α≠1时,该边值问题只有唯一的正解;(ii)当λ<0且α<-1时,该边值问题没有正解等结论。
3) positive integral solution
正整数解
1.
With a recursive sequence,quadratic remainder and congruence,the diophantine equation x2-3y4=97 is proved that it has only positive integral solutions(x,y)=(10,1).
运用递归数列,同余式和平方剩余证明了不定方程x2-3y4=97仅有正整数解(x,y)=(10,1)。
2.
Let p be a prime number,using Fermat Infinite method of descent,to study the positive integral solution of the equations x~4±3px~2y~2+3p~2y~4=z~(2) and x~4±6px~2y~2-3p~2y~4=z~(2).
设p为素数,利用F erm at无穷递降法,研究方程x4±3px2y2+3p2y4=z2与x4±6px2y2-3p2y4=z2正整数解的存在性,证明该方程在p≡5(m od 12)时均无正整数解,在p≡11(m od 12)时有解且有无穷多组正整数解,获得方程无穷多组正整数解的通解公式和方程的部分正整数解。
3.
By using computer language, we get all the positive integral solution of x2±xy+y2 = P and x2±xy+y2 = 3p within the scope of arbitrarily.
讨论了方程x2±xy+y2=k的可解性,利用C语言编写出方程x2±xy+y2=p和x2±xy+y2=3P的计算程序,并获得方程在一定范围内的所有正整数解。
4) positive integer solution
正整数解
1.
An equation involving the pseudo Smarandache function and its positive integer solutions;
关于伪Smarandache函数的一个方程及其正整数解
2.
On the necessary condition of one class of hyperelliptic equations having the positive integer solutions;
一类超椭圆方程有正整数解的必要条件的问题
3.
A function equation related to the Smarandache function and its positive integer solutions;
一个与Smarandache函数有关的函数方程及其正整数解
5) positive integer solutions
正整数解
1.
The Positive Integer Solutions of the Indefinite Equationx~2+(k-1)y~2=kz~2 & x~(k+2)-x~k =py~k;
不定方程x~2+(k-1)y~2=kz~2与x~(k+2)-x~k=py~k的正整数解
2.
An equation involving the functions Z(n) and D(n) and its all positive integer solutions
一个包含Z(n)和D(n)函数的方程及其它的正整数解
3.
An equation involving the Euler function and the Smarandache ceil function of k order and its positive integer solutions
一个包含Euler函数及k阶Smarandache ceil函数的方程及其正整数解
6) solution of positive integer
整正数解
补充资料:正整数
即“自然数”(1159页)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条