1) not have positive integer
没有正整数解
2) positive integral solution
正整数解
1.
With a recursive sequence,quadratic remainder and congruence,the diophantine equation x2-3y4=97 is proved that it has only positive integral solutions(x,y)=(10,1).
运用递归数列,同余式和平方剩余证明了不定方程x2-3y4=97仅有正整数解(x,y)=(10,1)。
2.
Let p be a prime number,using Fermat Infinite method of descent,to study the positive integral solution of the equations x~4±3px~2y~2+3p~2y~4=z~(2) and x~4±6px~2y~2-3p~2y~4=z~(2).
设p为素数,利用F erm at无穷递降法,研究方程x4±3px2y2+3p2y4=z2与x4±6px2y2-3p2y4=z2正整数解的存在性,证明该方程在p≡5(m od 12)时均无正整数解,在p≡11(m od 12)时有解且有无穷多组正整数解,获得方程无穷多组正整数解的通解公式和方程的部分正整数解。
3.
By using computer language, we get all the positive integral solution of x2±xy+y2 = P and x2±xy+y2 = 3p within the scope of arbitrarily.
讨论了方程x2±xy+y2=k的可解性,利用C语言编写出方程x2±xy+y2=p和x2±xy+y2=3P的计算程序,并获得方程在一定范围内的所有正整数解。
3) positive integer solution
正整数解
1.
An equation involving the pseudo Smarandache function and its positive integer solutions;
关于伪Smarandache函数的一个方程及其正整数解
2.
On the necessary condition of one class of hyperelliptic equations having the positive integer solutions;
一类超椭圆方程有正整数解的必要条件的问题
3.
A function equation related to the Smarandache function and its positive integer solutions;
一个与Smarandache函数有关的函数方程及其正整数解
4) positive integer solutions
正整数解
1.
The Positive Integer Solutions of the Indefinite Equationx~2+(k-1)y~2=kz~2 & x~(k+2)-x~k =py~k;
不定方程x~2+(k-1)y~2=kz~2与x~(k+2)-x~k=py~k的正整数解
2.
An equation involving the functions Z(n) and D(n) and its all positive integer solutions
一个包含Z(n)和D(n)函数的方程及其它的正整数解
3.
An equation involving the Euler function and the Smarandache ceil function of k order and its positive integer solutions
一个包含Euler函数及k阶Smarandache ceil函数的方程及其正整数解
5) solution of positive integer
整正数解
6) integer solution
正整数解
1.
Using the elementary methods,it was studied that the solutions of the equation Zw(Z(n))-Z(Zw(n))=0,and it was proved that the equation has infinite positive integer solutions.
用初等方法研究了方程Zw(Z(n))-Z(Zw(n))=0的可解性,并证明了该方程有无穷多个正整数解。
2.
In this paper we prove that if b■1(mod 16),b2+1=2c,b and c are both odd primes,then the equation x2+by=cz has only the positive integer solution(x,y,z)=(a,2,2).
如果b■1(mod 16),b2+1=2c,b,c都是奇素数,则方程x2+by=cz只有一个正整数解(x,y,z)=(a,2,2)。
3.
With the help of the theory of number, this dissertation shows that the Diophantine Equations X 5 ± X 3=DY 3 has integer solutions when D=P≡3,5(mod9), D=2P≡2,3(mod9) and D=4P≡2,3,5(mod6).
利用数论方法获得了丢番图方程x5-x3 =Dy3 有正整数解的充要条件 ,证明了当p为素数时 ,方程在D =P≡ 3 ,5 (mod9)时 ,仅有正整数解 (p ,x ,y) =(3 ,2 ,2 ) ,(3 ,5 ,10 ) ;在D =2P ,p≡ 2 ,3 (mod9)时 ,仅有正整数解 (p ,x ,y) =(3 ,7,14 ) ;在D =4P ,p≡ 2 ,3 ,5 (mod6)时 ,仅有正整数解 (p ,x ,y) =(2 ,3 ,3 ) ,(17,1163 ,14 695 3 8)。
补充资料:《没有国家的人》
本书是美国作家库尔特•冯内古特自1997年宣布封笔以来的第一部作品,其中的文章最初发表于芝加哥左翼杂志《当代》。全书呈现多主题的变奏,时而文学艺术,时而政治评论,时而历史人生,特别是对“9•11”以来的美国社会和美国人的心灵有敏锐而透彻的把握。字里行间体现着作家高超的幽默感,洞察世事的卓越智慧以及对世界的忧患意识。有时乐观,有时沉痛,甚至绝望,而思想的活力和批判的力度贯穿始终。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。