说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义严格α-次对角占优矩阵
1)  generalized strictly-subdiagonally dominant matrix
广义严格α-次对角占优矩阵
2)  generalized strictly diagonally dominant matrix
广义严格对角占优矩阵
1.
α-diagonally dominant matrices andcriteria for generalized strictly diagonally dominant matrix;
α-对角占优矩阵与广义严格对角占优矩阵的判定
2.
A is a generalized strictly diagonally dominant matrix,both Jacobi and Gauss-Seidel iterative methods of Equation Ax=b converge.
对广义严格对角占优矩阵A给出了解线性方程组Ax=b的Jacobi迭代法及Gauss-Seidel迭代法均收敛的证明。
3.
We present some simple practical criteria for verifying whether a locally diagonally dominant matrix is a generalized strictly diagonally dominant matrix.
引进局部对角占优矩阵的概念,得到这类矩阵的一些性质,给出了局部对角占优矩阵为广义严格对角占优矩阵的简单而实用的判定准则。
3)  generalized strictly diagonally dominant matrices
广义严格对角占优矩阵
1.
A simple and practicable method of judging generalized strictly diagonally dominant matrices and nonsingular M-matrices is introduced.
广义严格对角占优矩阵与非奇 M矩阵是非常重要的两类矩阵。
2.
In this paper, we adopt the definition of generalized Nekrasov matrices and give two equivalent conditions for generalized strictly diagonally dominant matrices, obtain some new practical criteria for generalized strictly diagonally dominant matrices, which include and extend some relevant results.
广义严格对角占优矩阵在数值分析和矩阵理论的研究中非常重要。
3.
<Abstrcat>By using the properties of Ostrowski diagonally dominant matrix,some sufficient conditions for weak α-double diagonally dominant matrix to be generalized strictly diagonally dominant matrices and comparative matrices to be nonsingular M-matrices.
 利用Ostrowski对角占优矩阵的性质,给出了弱α连对角占优矩阵为广义严格对角占优矩阵及其比较阵为非奇异M矩阵的若干充分条件,作为应用给出了相应的特征值分布定理,拓广了广义严格对角占优矩阵的判定准则。
4)  Generalized α-doubly diagonally dominant matrix
广义严格α-双对角占优矩阵
5)  Generalized strictly α-diagonally dominant matrices
广义严格α-对角占优矩阵
6)  generalized α-strictly diagonally matrix
广义α-严格对角占优矩阵
补充资料:对角矩阵


对角矩阵
diagonal matrix

  对角矩阵[血,司比.七妞;八.arooa二‘ua,MaTp“职] 一个方阵,其中除主对角线上的元素可能不是零以外,其余元素都是零.0.A.”般H。股撰【补注】域K上的(陀xn)对角矩阵具有下列形式: ra.o……O、 10几·…认01 LO···……a,)其中a‘是K的元素.张鸿林译
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条