说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 点可数集族
1)  point countable families
点可数集族
2)  strongly point-countable family
强点可数集族
3)  compact-countable family
紧可数集族
4)  locally separable spaces
星可数集族
5)  point-countably expandable family
可数可扩张集族
6)  σ-locally countabl collections
σ-局部可数集族
补充资料:可数集
可数集
countable set

   能与自然数集N建立一一对应的集合。又称可列集。如果将可数集的每个元素标上与它对应的那个自然数记号,那么可数集的元素就可以按自然数的顺序排成一个无穷序列a1a2a3,…an,…。例如,全体正偶数的集合是一个可数集,全体正奇数的集合也是可数集,它们与自然数集可以建立如下的一一对应
   自然数
    123456……n……
   正偶数
    24681012……2n……
   正奇数
    1357911……2n-1……这说明一个可数集可以含有可数的真子集,反过来,两个可数集也可以并成一个可数集。
   整数集与有理数集都是可数集。按照基数概念,能一一对应的两个集合的基数相同,于是有理数集、整数集、全体正偶数集等与自然数集有相同的基数。在这个意义上说,这些集合所含元素是“一样多”,但这些集合又是一个包含另一个作为真子集,所以又不同于有限集元素的“多少”概念。值得注意的是,并非所有的无穷集都是可数集,因为G.康托尔证明了实数集不是可数集,这样,实数集与自然数集有不同的基数,因而说明了无穷集所含元素数量的多少还有某种层次区别。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条