1) Chu bamboo slips
楚简
1.
"Dashui" is common worship in Chu bamboo slips as an important deity.
"大水"是出土楚简所载较普遍祭祀的重要神祇。
2.
The author studies the archaeological physical remains and records on the bamboo slips unearthed in Xincai and Jiudian,compiles the measurements seen in Chu bamboo slips,reviews the related theories of different schools and then expresses his own views on certain issues.
本文综合考古实物和新蔡楚简、九店楚简等的记录,对楚简所见量制单位进行了辑录整理,梳理诸家之说,并在此基础上对某些问题提出个人的看法。
3.
This paper takes some characters on the Chu bamboo slips as examples to discuss mis- identification of writing form in the Warring States period.
战国文字中存在字形混同、混讹的现象,本文主要通过楚简文字中的一些例证来探讨这两类现象。
2) the bamboo slips of Chu
楚简
1.
Notes in the check and interpretation of the Zhouyi copied on the bamboo slips of Chu (Ⅱ);
楚简《周易》校释记(二)
2.
Notes in the check and interpretation of the Zhouyi copied on the bamboo slips of Chu;
楚简《周易》校释记(一)
3) bamboo slips of Chu
楚简
1.
A new interpretation to the second line text of Hexagram Dun in Zhouyi copied on the bamboo slips of Chu;
楚简《周易》遯卦六二爻辞新释
4) bamboo slips of Chu State
楚简
1.
In Gedian city, Hubei Province, the bamboo slips of Chu State were excavated, on whichpainted the formation of the universe--"Taiyi Produces Water".
湖北葛店出土楚简出现“太一生水”的宇宙生成图式。
5) the Chu-Period Bamboo-Slips
楚简
1.
On the ldeas and Thoughts in the Chu-Period Bamboo-Slips of The Drought of the Lu State;
试论楚简《鲁邦大旱》篇的内容与思想
2.
Interpretation of the Chu-Period Bamboo-Slips of The Drought of the Lu state Collected in Shanghai Museum;
上博楚简《鲁邦大旱》解义
6) Guodian Chu bamboo slips
郭店楚简
1.
The Study on "the Orthodoxy of Loyal and Trust" of Guodian Chu Bamboo Slips;
郭店楚简《忠信之道》研究
2.
The discovery of Guodian Chu bamboo slips of Jingmen town Hubei province and the promulgation of Chu bamboo books of Shanghai museum, cause a sensation in China and even World.
湖北荆门郭店楚简的发现和上海博物馆收藏楚竹书的公布,轰动了中国乃至国际学术界。
3.
In the whole, Wuxing in Guodian Chu bamboo slips is a confucian work with the clear structure.
郭店楚简《五行》篇在整体上是一种体系性较强的儒家文本。
补充资料:简并
分子式:
CAS号:
性质:如果体系的一个力学量有n(n>1)个线性无关的本征函数对应于同一本征值,则称该体系的量子态为简并的;否则称为非简并的。线性无关的本征函数的数目称为简并度。可以证明,对应于简并本征值的n个独立的波函数的线性组合仍是线性算符的本征函数,并且具有相同的本征值。
CAS号:
性质:如果体系的一个力学量有n(n>1)个线性无关的本征函数对应于同一本征值,则称该体系的量子态为简并的;否则称为非简并的。线性无关的本征函数的数目称为简并度。可以证明,对应于简并本征值的n个独立的波函数的线性组合仍是线性算符的本征函数,并且具有相同的本征值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条