说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 和算史
1)  the history of Washan
和算史
2)  Historical Ability, Historical Writing Technique and Historical Connotation
史才、史笔和史蕴
3)  history of PRC
共和国史
4)  "history" and "theory"
"史"和"论"
5)  historyof computation
计算史
6)  historyof computer
计算机史
补充资料:和算
      日本传统数学。按狭义的理解,17世纪至19世纪中叶二百余年间,是和算的兴盛时期,和算即是专指这一时期(江户时期)的日本数学。明治维新(1868)以后,由于西方数学不断传入,和算逐渐衰废。
  
  在和算发展的初期,曾受到中国古代数学的很大影响。至8世纪初,日本已仿照隋唐时期的数学教育制度设置算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材(见《算经十书》)。在流传至今最早的和算书《口游》(970)中,还可以看到中国数学的影响。但是,直到15世纪之前,和算并没有较大发展。
  
  进入16世纪以后,伴随着城市手工业和工商业的发展,对计算数学的要求日益迫切。中国元代数学家朱世杰所著《算学启蒙》和明代数学家程大位所著《算法统宗》等先后传入日本,对和算的前期发展产生了重大影响。1622年出版了现存最早的印刷本和算书《割算书》(毛利重能著)。1627年出版的《塵刼记》(吉田光由著),使珠算术在日本迅速得到普及。从内容上看《塵刼记》与《算法统宗》极为类似,但其中许多算题都是根据日本的实际情况而编写的。此书在以后的二百余年间,先后出版了各种不同版本达三百余种,在日本广为流行。早期的和算书还可以举出《诸勘分物》(百川治兵卫)、《竖亥录》(今村知商,1639)等。
  
  从17世纪70年代开始,由于関孝和学派(関流)几代人的努力,和算进入了兴盛时期。関孝和在日本备受尊崇,被称为算圣。関氏学派的主要成就是"点窜术"和"圆理"。"点窜术"把由中国传入的天元术改为笔算并在算式的记法方面作了改进,是和算特有的笔算代数学。"圆理"是和算所特有的数学分析。经过不断的发展,它在某些问题上取得了和西方微积分学相类似的若干成果。関孝和的弟子建部賢弘利用二分弧、四分弧等逐渐加倍分弧的方法求得关于弧长的无穷级数表达式,亦即相当于得出:
  这是圆理的初期成果之一。除"点窜术"和"圆理"之外,在方程式论、行列式、幻方、连分数和不定方程解法等方面,関氏学派也作出了不少成果。属于関氏学派的和算家还有中根元圭、久留岛羲太、松永良弼、山路主任等人。山路的学生安岛直円在计算圆面积时,曾先用一组平行线将圆割为许多极狭的矩形,再行求出这些矩形面积和的极限。这一思想扩大了圆理的应用范围。椭圆以及其他平面曲线围成的面积、弧长等等,皆可循此算出;进而曲面的表面积以及体积的求积等问题均可用无穷级数进行求解(相当于重积分)。晚期的関氏学派和算家和田寧进一步改进了圆理。他利用了微小的切线线段进行计算,制作了很多数表,使计算弧长、面积、体积等问题,更加简化。他所用的方法和现代通用的积分法,在原理上十分接近。但是,用圆理可积分的函数还只限于是代数函数的若干特定类型。
  
  除関氏学派之外,还有一些较小的和算学派。值得注意的有会田安明与関氏学派间的抗衡。这种抗衡产生了不少数学著作。各学派之间这种相互竞争又对各自的算法相互保密的关系,颇与中世纪手工业行会的性质相似。
  
  从16世纪开始,西方数学开始传入日本;19世纪中叶日本采取开国政策之后,西方数学大量传入。明治维新时期,在日本政府明令"和算废止,洋算专用"之后,和算迅速衰废。只有珠算仍被沿用至今。日本算盘,上一珠,下五珠,珠的截面呈菱形,运算时只用拇、食二指。
  
  据统计,历史上留有姓名的和算家约在 300人左右,著作约5000部。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条