1) n-cocoherent ring
n-余凝聚环
1.
Using n-copresented modules, we introduce the concepts of n-copresented dimension COPn dM of a module M and characterize a right n-cocoherent ring R, that is, R is right n-cocoherent if and only if COPn d(M) = COPn+1d(M) for each right R-module M.
利用n-余表现模定义了模M的n-余表现维数COPnd(M),刻画了右n-余凝聚环,即R为右n-余凝聚环当且仅当对于任意右R-模M,均有COPnd(M)=COPn+1d(M),并研究了在环扩张下模的n-余表现维数的若干关系式。
2) Co coherent ring
余凝聚环
3) n-coherent ring
n-凝聚环
1.
Some characterizations of right n-coherent rings by FP_n-injective right modules and FP_n-flat left modules are given, and it is showed that the right n-coherent ring is just such that the class of FP_n-injective right modules is coresolving (n≥1),and that the class of FP_n-flat left modules is resolving(n≥2).
通过引入FPn-内射右模与FPn-平坦左模来刻划右n-凝聚环,证明了R是右n-凝聚环当且仅当FPn-内射右R-模组成的模类是上分解的(n≥1),当且仅当FPn-平坦左R-模组成的模类是分解的(n≥2)。
2.
We give a classification of right n-coherent rings and a characterization of right global dimensions of rings.
本论文研究了模与环的n-表现维数及与其他维数的关系,给出了右n-凝聚环的一种分类,并得到了环的右总体维数一个刻画。
3.
Using n-presented modules, introduce the concepts of n-presented dimensions FPnd(M) and FPnD(R) of a module M and a ring R, obtain some relations among FPnd(M),fd(M) and pd(M),and then characterize a right n-coherent ring R, that is,R is right coherent if and only if FPnd(M)=FPn+1d(M)for each right R-module M.
利用n-表现模定义了模M与环R的n-表现维数FPnd(M)与FPnD(R),给出了FPnd(M),fd(M)及pd(M)之间的关系,刻画了右n-凝聚环,即R为右n-凝聚环当且仅当对于任意右R-模M,均有FPnd(M)=FPn+1d(M)。
4) τ-n-coherent ring
τ-n-凝聚环
1.
It was shown that there are many similarities between coherent rings and τ-n-coherent rings, then some.
本文主要研究挠理论上的凝聚性,给出T-n-凝聚环多种不同形式的刻画(这里的τ是指某个遗传挠理论),并讨论τ-n-凝聚环上的一些性质。
5) right n-coherent ring
右n-凝聚环
6) (m,n)-coherent ring
(m,n)-凝聚环
补充资料:余一余三
1.《礼记.王制》:"以三十年之通,制国用。"孔颖达疏:"每年之率,入物分为四分,一分拟为储积,三分而当年所用。二年又留一分,三年又留一分。是三年揔得三分,为一年之蓄。三十年之率,当有十年之蓄。"又《汉书.食货志上》:"民三年耕,则余一年之畜……三考黜陟,余三年食。"后遂以"余一余三"谓连年丰收,家有储粮,国库充盈。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条