1) separation theorems
锥线性算子
1.
A kind of cone separation theorems is established, by which the extension theorems for cone linear continuous operators are developed.
建立了一种锥分离定理 ,据此证明了锥线性算子的延拓定理 ,作为应用 ,给出了正线性算子的延拓定
2) linear operator
线性算子
1.
A family of meromorphic multivalent functions defined by a linear operator;
由一个线性算子定义的亚纯多叶函数类
2.
Skew - tripotent preserving linear operators from skew-symmetric matrix spaces to all matrix spaces;
反对称矩阵空间到全矩阵空间的保反立方幂等线性算子
3.
Some properties of a bounded linear operator defined by a g-Bessel sequence;
由g-Bessel序列定义的线性算子的一些性质
3) Linear operators
线性算子
1.
On approximation by linear operators in reiteration interpolation spaces;
用线性算子刻画迭代内插空间
2.
In Part one, the weighted approximation by the linear operators in classical spaces and approximation in Orlicz spaces are studied; In Part two, the approximation of multivariate linear operators is discussed.
本学位论文分为上下两篇,上篇主要为一元线性算子在经典空间的加权逼近和Orlicz空间的逼近:下篇为多元线性算子在经典空间的逼近和加权逼近。
3.
The spectrum of unbounded linear operators was divided into different subsets by the different studying purposes.
无界线性算子谱理论的研究是算子理论的重要研究内容,它能有效地解决现代数学、现代物理学、量子力学中的具体问题。
4) cone preserving operator
保锥算子
5) Multilinear operator
多线性算子
1.
In this paper,some multilinear operators related to the Littlewood-Paley operators are defined,and the weighted boundedness for the multilinear operators on some Block-Hardy spaces are obtained by using the atomic and block decomposition of the spaces.
定义一类与L ittlewood-paley算子相关的多线性算子,它是L ittlewood-paley算子的交换子的推广。
2.
The continuity for some multilinear operators related to certain convolution operators on the Triebel-Lizorkin space are obtained.
对一类相关于非卷积型算子的多线性算子,证明了其在Triebel-Lizorkin空间上的连续性,该算子包括Littewood-Paley算子和Marcinkiewicz算子。
3.
In this paper, we prove the endpoint boundedness for some multilinear operators related to certain non-convolution operators.
本文对一类相关于非卷积型算子的多线性算子,证明了其在端点情形上的有界性,该算子包括Littlewood-Paley算子和Marcinkiewicz算子。
6) nonlinear operator
非线性算子
1.
Several stabilities of nonlinear operators;
非线性算子的几种稳定性
2.
The Fréchet derivative of a nonlinear operator and its applications;
一类非线性算子的Fréchet导数及其应用
3.
, Banach space X is uniformly convex and its module of convex (δX(ε)≥)cε~p (0<ε<2,0<c<1,p≥2) if and only if norm of X is satisfied with the inequality ‖(1-(t)x+)ty‖~p+cw(t)‖x-y‖~p≤(1-t)‖x‖~p+t‖y‖~p, x,y∈X, and t∈(0,1), w(t)=(t(1-)t)~p+(1-t)t~p, the authors obtained the convergence of Ishikawa iterative sequences for nonlinear operator.
研究了非线性算子关于由Ishikawa迭代序列的收敛性 ,推广和改进了一些相关的结
补充资料:非线性算子半群
非线性算子半群
semi-group of non-linear operators
非线性算子半群【脚顽一,.平of咖~h粉盯卿rat份s;no,y印yll皿a He”HHe盆“以0“epaTopool定义并作用在B以朋ch空间(Banach sPace)X的闭子集C上的单参数算子族S(t),O落t<的,且具有下列性质: 1)S(t+:)x=S(t)(S(:)x),x〔C,t,:>0; 2)S(O)x二x,x‘C; 3)对任何x〔C,函数S(:)x(在X中取值)在【0,的)上是t的连续函数 半群S(t)是。型的,若 }Js(t)x一s(t)夕l}(e“‘}}x一夕}l,x,y‘e,t>0. 0型的半群称为压缩半群(conti公ction senu-grouP). 和线性算子半群(见算子半群(s。旧l一grouPofoperators”的情形一样,可引进半群S(t)的生成算子(罗nem山堪opemtor)(或无穷小生成元(i汕拍te-Sim司罗nerator))A。的概念: Sfh)x一x A。x二Um“、‘’产犷丹 一。一档乞人仅对那些使极限存在的元素义‘C来定义.若S(0是压缩半群,A。就是耗散算子.可以想到,Ba几Icll空间X中的算子A是耗散的(dissiPative),若对x,厂刀了牙),又>0,有}}x一y一又(Ax一Ay)“)“x一y}}.耗散算子可以是多值的,这时定义中的A义代表它在x处的任何值.一个耗散算子称为m耗散的(。一diSSIPative),若Ra刊犷(I一又A)二X,对几>0.若S(t)是口型的,则A一田I是耗散的. 半群生成的基本定理(几仄城浏犯因伪eon级n onthe罗nerationof~一groups):设A一田了是耗散算子,且对充分小的又>0,Ra翔多(I一又A)包含D(A),则存在石了又下上。型半群S,(0,使得 “·‘!,一厄「了一、小,这里x‘万石刃,,且在任何有限t区间上一致收敛.(若用较弱的条件 忽“一’‘(Ra刊罗(I一“A),二)二。(其中d是集合间的距离)来代替Ran罗(I一几A),S,(t)的存在性也能被证明). 对任何算子A,存在相应的Cauchy问题(Cauc场problon) 会(:)。,u(声),:>o,u(o)一x.(·)若问题(*)有强解(s加飞50】丽on),即有在10,的)上连续,在(0,田)的任何紧子集上绝对连续,对几乎所有t>O取值于D(A)且有强导数的函数。(t),它满足关系(*),则u(t)=S,(t)x.任何函数S,(t)x是问题(*)的唯一的积分解(integlal solu-tion) 在基本定理的假设下,若X是自反空间(代批xi灾sPac。),A是闭算子(ck粥ed operator),则函数u(t)=S,(t)x,对于x‘D(A),产生Cauchy问题(*)的强解,且几乎处处有(d“/dt)(£)C通““(r),其中A”z是A:中有极小范数的元素的集合.这时半群S,(‘)的生成算子A。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条