说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊矩阵的Schein秩
1)  schein rank of a fuzzy matrix
模糊矩阵的Schein秩
2)  schein rank of matrix
矩阵的schein秩
1.
Based on the equality between the schein rank of matrix and the rank of matrix on Soft Algebra [0,1], this paper constructively demonstrates that the unique generalized inverse matrix exists in any non-zero matrix on [0,1].
本文在软代数[0,1]上矩阵的schein秩等于其秩的基础上,构造性地证明了[0,1]上任一非零矩阵都存在唯一的广义逆矩阵。
3)  rank of matrix
矩阵的秩
1.
By means of the rank of matrix, line outspreading, it gives some conditions in which a matrix can decompose to two Kronecker products of matrix.
对矩阵Kronecker积分解进行研究,通过矩阵的秩,行展开等方法,给出了将一个矩阵分解为两个矩阵Kronecker积的若干条件。
2.
In this note,we describe the equivalent propositions on the rank of matrix by determinants,equivalent of matrix,system of linear equations,linear space,linear mapping and so on.
从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题。
3.
Necessary and sufficient conditions for the Frobenius inequality of rank of matrix to be equality are dicussed in this paper,and the characterization of rank of a class of matrix is characterized.
讨论了矩阵秩的Frobenius不等式取等号的充分必要条件,刻画了一类矩阵的秩特征。
4)  rank of a matrix
矩阵的秩
1.
This paper summarizes the applications of elementary transformation of matrix in solving the rank of a matrix or a set of vectors,calculating inverse matrix or system of linear equations,and solving the system of linear equations and the greatest common divisor of polynomials with examples,furthermore,it introduces the thought and application of generalized elementary transformation.
文章总结了初等变换在求矩阵的秩、向量组的秩、逆矩阵,求解线性方程组和多项式的最大公因式等方面的应用,并通过实例加以说明,进而介绍了广义初等变换的思想方法和应用。
5)  rank [英][ræŋk]  [美][ræŋk]
矩阵的秩
6)  Matrix order
矩阵的秩
1.
There are many proofs of this theorem: matrix order equals row order of matrix equals line order of matrix.
关于定理"矩阵的秩=矩阵的行秩=矩阵的列秩"的证明方法较多,本文将用初等变换的方法给出证明,此证明方法易于理解,便于计算机编程实现,有利于机器证明。
补充资料:模糊矩阵
分子式:
CAS号:

性质: 用来表示模糊关系的矩阵,如果集合X有m个元素,集合Y有n个元素,由集合X到集合Y中的模糊关系R,可用矩阵表示。模糊矩阵中元素aij表示集合X中第i个元素与集合Y第j个元素从属于模糊关系R′的程度,在闭区间[0,1]中取值。这种将元素在闭区间[0,1]中取值的矩阵称为模糊矩阵。模糊矩阵的乘法运算与普通的矩阵运算相似,不同的是并非先两项相乘后相加,而是先取小而后取大。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条