1) line order of matrix
矩阵的列秩
1.
There are many proofs of this theorem: matrix order equals row order of matrix equals line order of matrix.
关于定理"矩阵的秩=矩阵的行秩=矩阵的列秩"的证明方法较多,本文将用初等变换的方法给出证明,此证明方法易于理解,便于计算机编程实现,有利于机器证明。
2) rank of matrix
矩阵的秩
1.
By means of the rank of matrix, line outspreading, it gives some conditions in which a matrix can decompose to two Kronecker products of matrix.
对矩阵Kronecker积分解进行研究,通过矩阵的秩,行展开等方法,给出了将一个矩阵分解为两个矩阵Kronecker积的若干条件。
2.
In this note,we describe the equivalent propositions on the rank of matrix by determinants,equivalent of matrix,system of linear equations,linear space,linear mapping and so on.
从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题。
3.
Necessary and sufficient conditions for the Frobenius inequality of rank of matrix to be equality are dicussed in this paper,and the characterization of rank of a class of matrix is characterized.
讨论了矩阵秩的Frobenius不等式取等号的充分必要条件,刻画了一类矩阵的秩特征。
3) rank of a matrix
矩阵的秩
1.
This paper summarizes the applications of elementary transformation of matrix in solving the rank of a matrix or a set of vectors,calculating inverse matrix or system of linear equations,and solving the system of linear equations and the greatest common divisor of polynomials with examples,furthermore,it introduces the thought and application of generalized elementary transformation.
文章总结了初等变换在求矩阵的秩、向量组的秩、逆矩阵,求解线性方程组和多项式的最大公因式等方面的应用,并通过实例加以说明,进而介绍了广义初等变换的思想方法和应用。
5) Matrix order
矩阵的秩
1.
There are many proofs of this theorem: matrix order equals row order of matrix equals line order of matrix.
关于定理"矩阵的秩=矩阵的行秩=矩阵的列秩"的证明方法较多,本文将用初等变换的方法给出证明,此证明方法易于理解,便于计算机编程实现,有利于机器证明。
6) rank of incline matrix
坡矩阵的秩
补充资料:列秩
1.按品级排列。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条