1) generalized Kantorovic operator
Kantorovic型算子
2) generalized Kantorovic operators
推广的Kantorovic型算子
1.
In this paper,the problems of convergence and approximation degree by a kind of generalized Kantorovic operators P*n(f,x) are studied.
通过研究一类推广的Kantorovic型算子Pn*(f,x)对不连续函数的逼近,得到了有界Lebeague可积函数的第一类间断点在区间[0,1]上收敛的充分条件,并给出了有界变差函数收敛度的估计式。
2.
In this paper,a kind of generalized Kantorovic operators are constructed,the convergence of these operators in the space Lp (1<p<+∞) is studied and the estimate of the degree of approximation is obtained.
构造了一类推广的Kantorovic型算子,讨论了它们在Lp空间(1
3) Quasi-Kantorovic operators
积分型拟Kantorovic算子
1.
Direct and inverse theorems of approximation by the Quasi-Kantorovic operators in L_M~(Ba) spaces;
L_M~(Ba)空间中积分型拟Kantorovic算子逼近正逆定理
4) Stancu-kantorovic operator
Stancu-kantorovic算子
6) multivariate Kantorovi type Meyer-Knig-Zeller operators
多元Kantorovic型Meyer-K nig-Zeller算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条