1) Monte Carlo numerical method
![点击朗读](/dictall/images/read.gif)
MonteCarlo数值方法
2) Monte Carlo(a method of numerical analysis
![点击朗读](/dictall/images/read.gif)
MonteCarlo(一种数值分析方法)
3) Monte Carlo method
![点击朗读](/dictall/images/read.gif)
MonteCarlo方法
1.
Monte Carlo method is used to simulate energies and space distributions of low-energy electrons scattering(E_0≤5 keV) in Ni,NiTi and Ti bulks.
采用MonteCarlo方法,模拟了低能电子束(能量E0≤5keV)作用下Ni,Ti及NiTi合金固体中的电子散射,分析了3种金属/合金中散射电子的能量与空间分布。
2.
The Monte Carlo method has been used in the microstructure simulations of unidirectional solidification, bidirectional solidification, multidirectional in ward solidification and bulk solidification.
应用MonteCarlo方法模拟了定向凝固条件下微观组织的形成过程 ,同时还模拟了双向凝固、四边由表向里凝固及整体凝固的微观组织形成过程 ,模拟结果与实际情况非常接近 。
3.
Its performance is exhibited by Monte Carlo method.
![点击朗读](/dictall/images/read.gif)
方法 以非虚假设取代虚假设将经典非中心法加以扩展 ,以MonteCarlo方法展示其行为。
4) Monte Carlo simulation
![点击朗读](/dictall/images/read.gif)
MonteCarlo方法
1.
Monte Carlo simulation is a method using stochastical simulation to seek the approximate solution of prob- lem by statistical analysis of random variable.
MonteCarlo方法是一类通过随机变量统计试验,随机模拟以求得问题近似解的方法。
2.
A best angular radius was derived statistically using Monte Carlo simulation while tested angular distribution is certain.
考虑实测角分布和角半径的关系 ,在实测角分布保持一定的情况下 ,用MonteCarlo方法推导出 1个统计意义上的最佳角半径 。
5) Monte-Carlo method
![点击朗读](/dictall/images/read.gif)
MonteCarlo方法
6) Monte Carlo Approach
![点击朗读](/dictall/images/read.gif)
MonteCarlo方法
1.
Based on this solution and comb ined with Monte Carlo approach and Cantor encoding, an approximate secure multi -party computation solution to graph-inclusion problem is further proposed.
多方保密计算是近几年国际密码学界研究的一个热点问题·研究了保密的集合包含与几何包含问题,提出集合包含问题的多方保密计算方案,在此基础上结合MonteCarlo方法与Cantor编码方法,提出了任意几何图形包含问题的近似多方保密计算方案·并利用模拟范例证明了方案的安全性·同已有的方案相比,提出的方案适用范围广、通信复杂性低;在解决已有方案可解决的同样问题时,某些情况下计算复杂性也比较低
2.
Then we use Monte Carlo approach and Cornish-Fisher approach to compute VaR value of portfolio of FX options.
引入金融参数Delta、Gamma、Theta,将外汇期权近似表达式拓展成Delta Gamma Theta模型,然后分别使用了MonteCarlo方法和Cornish Fisher方法来计算外汇期权组合的VaR值,并发现使用这两种方法得到的VaR值相差不大,都比Delta 正态模型有非常大的改进,但Cornish Fisher方法计算简单、快速,而MonteCavlo方法计算繁琐、速度慢。
补充资料:Cauchy问题,常微分方程的数值方法
Cauchy问题,常微分方程的数值方法
audiyproHem, numerical methods for ordinary differential equations
Ca‘hy问皿,常橄分方程的数值方法【Ca“由y脚曲幻11,numeri因me山川s址。浦n.令山价跨n柱al equ劝舰s;Ko山“3a几a,a,叼“c月eltH石此MeTo口‘1 pe山e““,皿几,浦姗u此eu“oro职中钾Peuu.a几研oroyP韶ne..,1 Q以为y问题是求满足一个微分方程(或微分方程组)的一个函数(或几个函数),并在某固定点上取给定值的问题.设y(x)={yl(x),…,yn(x)}, f(x,y)=仃l(x,y),…,儿(x,少)}为分别在闭区间I=笼x:}x一al簇A}上和闭区域n二{(x,y):lx一al簇A,}{y一bl!簇B}内有定义并连续的向量函数,其中日.}}是有限维空间R”的范数.使用这个记号,我们可将一阶常微分方程的Q议为y问题写成: 少’(x)=f(x,少),少(x。)=少。,x。。I,少。Ell.(I) 适当选择新未知函数可将任一常微分方程组(任意阶的)的Q议hy问题简化成这种形式. 如果函数f(x,y)在n中连续,问题(l)有解.对解的唯一性的充分条件是05即od条件(05即od condi石on): 1 1 f(x,川一f(x,少2)}】(。(}}少:习:}}),(2)其中。(t)函数满足 c(工、00.。*0.。>0. 毛.气l)或者是更强的Li声chitZ条件(Li声Chilz condltion): I}f(x,少、)一f(x,yZ){}簇L! .y,一y:}!(3)成立,数L称为Li详Chi仪亨攀(Li声chitZconstant)·如果f(x,力对y连续可微,那么Li详d腼tZ常数的一个可 能值为 “一絮11常11·(4)在Li详chitZ常数(4)太大的各种情况下,用数值方法成功地解Q雀hy问题要求专门的数值技术,尽管从理论上讲这个问题是唯一可解的.特别是矩阵(方/日x)的本征值“很分散”时,即最大的本征值是最小的儿百倍甚至几千倍,就出现这种情况.这样的微分方程组称为刚俘枣邻s叮s”‘),对应的问题称为刚件。“力y卿覃(s叮CauChy probl~)·刚性系统的一个“源”是偏微分方程(例如通过直线方法)到常微分方程组的转换. 常微分方程的数值方法通常包括一个或数个公式,它们确定在离散点列凡(k=0,1,…)上要找的函数y(x)的关系.这些点的集合称为网格.一般的数值方法以及特别用于微分方程的数值方法,其基础是由L.Euler建立的.解0以为y问题的最简单的方法之一就是以他的名字命名的.这个方法如下.将问题(1)的解展成关于点xk的几尹or级数: (x一x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条