1) a-Bloch Constant
α-Bloch常数
2) α-Bloch function
α-Bloch函数
1.
Mbius invariant gradient and α-Bloch functions.;
Mobius不变梯度和α-Bloch函数
3) Bloch constant
Bloch常数
1.
Blaschke product and Bloch constant are different concepts in classical function theory ,this thesis explores the internal relations between the two different concepts and gets three theorems,This provides theoretical basis for the application of the relations between Blaschke product and Bloch constant.
Blaschke乘积和Bloch常数是经典函数论中的两个不同概念 ,各自独立存在 。
2.
In this thesis, we investigate Bloch constant Bn of the functions whose derivative has zeros with multiplicity at least n, and composition operators on Bloch spaces.
本文主要研究导函数零点重级至少为n的函数的Bloch常数和Bloch空间上的复合算子。
4) harmonic α-Bloch function
调和α-Bloch函数
1.
In this paper,characterizations of harmonic α-Bloch function and harmonic little α-Bloch function are given by means of increasing functions,which extends earlier results of the second author.
用给定的增函数刻画调和α-Bloch函数和调和小α-Bloch函数的特征,它们改进了第二作者早期的一些结果。
5) harmonic little α-Bloch function
调和小α-Bloch函数
1.
Harmonic α-Bloch and harmonic little α-Bloch functions;
调和α-Bloch函数和调和小α-Bloch函数
6) α-Bloch spaces
α-Bloch空间
1.
We characterize the boundedness and compactness of the weighted compo- sition operator uC_φ between the logarithmic Bloch spaceβ_L and theα-Bloch spacesβ_αon the unit disk.
本文讨论了单位圆上对数Bloch空间β_L和α-Bloch空间β_α之间的加权复合算子uC_φ的有界性和紧性,主要得到以下结论:(i)uC_φ是空间β_L和β_α之间的有界算子或紧算子的充要条件;(ii)uCφ是空间β_L~0和β_α~0之间的有界算子或紧算子的充要条件。
2.
In this thesis, we investigate composition operators and multiplication operators betweenα-Bloch spaces, and weighted composition operators of H~∞intoα-Bloch spaces on the unit ball.
本文研究单位球上的α-Bloch空间之间的复合算子,乘积算子和H~∞到α-Bloch空间的加权复合算子。
3.
The first part is focus on theintegral characterization ofα-Bloch functions on the unit disc D, and givesa sufficient and necessary condition of a function analytic in D belongingto both Hardy spaces andα-Bloch spaces whenα≥1.
本文分为三个部分,第一部分研究了复平面上α-Bloch空间的积分特征,并用该特征给出了α≥1时,函数同时在α-Bloch空间和H~p中的充要条件。
补充资料:Bloch常数
Bloch常数
Bloch constant
【译注1关于Bloeh常数B的F界估计M .Hein以[Bl])和Ch.pommerenke([BZ〕)曾证明B习了广4,且11[2}的结果只保留不等号BI.对l常数IB10d,“.stant;Ejoxa姗cl习.T,」 一个由Blocll定理(Bloc】1 theorem)确定其存在的绝对常数.设打是单位圆}之{
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条