说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一致凸算子
1)  uniformly convex operator
一致凸算子
1.
The definition of uniformly convex operator and its properties are given in this paper.
本文讨论一致凸算子的问题,得到了算子T为一致凸算子的充要条件以及一致凸算子的性质。
2)  locally uniformly convex operator
局部一致凸算子
3)  consistent estimator
一致推算子,一致估计[量]
4)  uniformly convex
一致凸
1.
Convergence theorems of Ishikawa iteration for nonexpansive mapping in a uniformly convex Banach space;
一致凸Banach空间中非扩张映象的Ishikawa迭代收敛定理
2.
The existence and Uni queness theorems of common coupled fixed point and coincidence points for a sequence of binary contraction mappings,canceled all continuous assumptions in uniformly convex Banach space.
在一致凸 Banach 空间中,获得了二元非线性压缩映象对和映象列的公共耦合不动点的存在与唯一性定理,并对已有的结果进行了推广。
3.
It reaches the conclusion that the continuous multi_valued asymptotically nonexpansive on the nonempty closed convex and bounded subset of a uniformly convex Banach space has a fixed point.
本文借助于渐近中点、渐近半径的概念,得到一致凸Banach空间中非空有界闭凸子集上的连续集值渐近非扩张映射有不动点。
5)  UR point
一致凸点
6)  uniform convexity
一致凸
1.
When p > 1, necessary and sufficient condition for d(w,p) to be uniform non-square is sup ,and obtain that uniform convexity is equivalent to uniform nonsquare.
当p>1时,d(w,p)一致非方的充分必要条件是,从而得到了一致非方与一致凸等价。
2.
This indicates that the nonsquare constant is not necessary to be 2~(1/2) in some spaces with P_λproperty for someλ, and that P_λproperty does not imply strict convexity or even uniform convexity.
其次,介绍了关于非方常数,等腰正交的基本定义和基本结论,并且构造了一个具有P_λ性质的Banach空间,计算出了该空间的非方常数,从而说明了对于某特定的λ,具有P_λ性质的赋范空间其非方常数不一定为2~(1/2) ,同时也说明了具有P_λ性质并不能保证赋范空间的严格凸性或者一致凸性。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条