说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矩阵的化零多项式
1)  annihilates polynomial of a matrix
矩阵的化零多项式
2)  Inverse of a matrix Polynomial
矩阵多项式的逆
3)  polynomial matrix
多项式矩阵
1.
In this paper, the concepts of the least common multiple of polynomial matrices and the prime polynomial matrix are introduced, and some algebraic properties of the greatest common divisor and of the least common multiple of polynomial matrices are given.
讨论了多项式矩阵最大公因子与最小公倍的有关性质,同时给出了多项式矩阵的分解定理。
2.
Based on the theory of polynomial matrix,it is implied that the right coprime of polynomialmatrices of the autoregressive part and moving-average part is only the necessary condition,not the suf-ficient condition to ensure that the model is the normalized form.
本文从多项式矩阵理论入手,指出多维时序模型的自回归部分多项式矩阵与滑动平均部分的多项式矩阵右互质,只是保证模型为典则型的必要条件,而不是充分条件,因此,为了获得多变量时序模型的典则型,必须限制模型的部分参数表达形式,因此提出了一种形式简单的多变量时序模型的典则型,并给出了实现的具体算法,还证明了该典则型自回归与滑动平均部分的多项式矩阵是右互质的。
4)  matrix polynomial
矩阵多项式
1.
On square-rooting matrices of a kind of matrix polynomial
一类矩阵多项式的平方根矩阵问题
2.
The frequency criteria for Schur stability of matrix polynomials without expanding the determinants of the matrix polynomials has been proposed.
提出矩阵多项式Schur稳定的频域判据 ,可避免矩阵多项式的行列式展开 ,使多输入多输出离散时滞系统稳定性检验得以简
3.
Based on this,some identities of the rank of a class of matrix polynomials were obtained.
给出了矩阵秩的Frobenius不等式取等号的一个充分条件,在此基础上获得了一类矩阵多项式秩的恒等式。
5)  Drazin inverse of a polynomial matrix
多项式矩阵的Drazin逆
6)  the Jeast pojynomial of a matrix
矩阵的最小多项式
补充资料:最小零偏差多项式


最小零偏差多项式
polynomial least deviating from zero

最小零偏差多项式[卯l”nl血1 least山viati吃f枷~;”a,,Me“ee加旧10”:。川“盛c,oT“”,M“oro,“eoJ 在空间CI“,b]或L,〔a,b]中具有最小范数的首项系数为l的。次代数多项式. n.月.ue6月meB在艺l}中证明:在形如 Q,,(x)=戈”+a‘x”一’十…十a,.(1)的所有多项式中,多项式 。「b一。〕”「2,一“一b〕1.(戈I=匕l—IC〔万儿arC COSI—l L,」LD一a」是空间C【“,b1中具有最小范数的唯一多项式,且其范数为 },:,:,,。,“.。,一}宁i”·多项式 U。(x)= _「占一a]”+’:访((;:+z)a二cos(Zx一a一乃、/(n一al、二,l二二-一二七l止竺型二匕入竺二石址公竺兰二艺匕二二二二一二乙一 一L4」丫(b一x)(x一a)是L,l“,b]上(在所有形式(l)的多项式中)唯一与零偏差最小的多项式,其范数为 J「b一。飞二1 }、。。.}:,;,八)一‘L上-不竺一」在L,fa,bJ中,lo(2)最小,当且仅当Q。(x)关于权函数p(x)在区间(a,I))上与所有,:一I次的多项式正交.若 a二一l,b“l,夕(x)=(1一x)“(l+x)声.其中:,吞>一I,则首项系数为1的n次Jac面多项式(Jacohi polyno而al)使积分(2)达到极小(若:二方二0,则首项系数为1的。次Lege耐re多项式(Legendrepol”。rnjals)使(2)达到极小). 在形如 ”一l acos。x+吞sinnx+艺(a*。05火x+占*sin人x)的所有三角多项式中,其中“与b固定,空间CIO、2兀l和L,[0,2二l(对任意的。)l)中的最小范数多项式均为 aeOS尹飞x+bsin,tx.【补注】多项式T。和U。分别称为第一类和第二类(规范)qe6曰山e。多项式(Chebyshev Polyn01拍al)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条