说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 反演算子
1)  reciprocal operator
反演算子
1.
In this paper,we discusse the A—properness of the A-proper reciprocal operators and generalized the opera-tional formula of degree given by Sun Gingxian in 1989,from completely continuous to A-proper operators,andthen we also give some application to P_r-compact operators.
本文研究了A-proper算子的反演算子的A-proper性,并将孙经先(1989)给出的全连续反演算子的拓扑度计算公式推广到A-proper 反演算子,同时还给出了某些应用。
2)  p-inversion operator
p-反演算子
3)  bandlimited inverse operator
限带反演算子
4)  Operational calculus
算子演算
5)  inverse calculation
反演计算
1.
Mechanistic modeling for particle size measurement by ultrasonic technique and inverse calculation of particle size distribution;
超声粒度检测建模及其粒度分布反演计算
2.
The permeability parts of aquifer are set up by using cluster analysis and fuzzy comprehensive judgment and the rank relationship of permeability coefficient of every part of aquifer is given and the way to enhance the precision of inverse calculation of permeability is described.
应用聚类分析、模糊综合评判方法建立含水层渗透系数分区,给出各分区渗透系数的级配关系,论述了提高反演计算含水层渗透系数精度的途径。
6)  inverse algorithm
反演算法
1.
The water quality multi parameter identification and inverse algorithm;
水质多参数辩识与反演算法
2.
Combined with the inverse algorithm of the optimum regulation technique,the particle size distributions of sediment under different volumetric concentrations are obtained according to the attenuation prediction of Coupled-phase model plus Bouguer-Lambert-Beer-Law scattering model and experimental attenuation spectrum at frequency ranges from 2MHz to 7MHz.
采用超声耦合相模型和Bouguer-Lambert-Beer-Law散射模型的叠加描述河流泥沙中超声衰减行为,宽频超声换能器测量得到2MHZ至7MHZ间泥沙声衰减谱,结合独立模式的最优正则化反演算法,获得了体积浓度4。
3.
Some problems on the Philip-Twomey-NNLS inverse algorithm used widely in particle sizing were discussed, and a new method is presented to optimize the parameter y.
光、声散射法颗粒尺寸测量中的反问题又称反演算法,即对多分散颗粒两相介质,通过测得的多个波长或频率下的信号,由第一类Fredholm积分方程反演计算得到颗粒尺寸分布。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条