1) generalized spline subdomain methods
广义样条子域法
1.
The displacement mode is established by using generalized spline subdomain methods which has the advantage of fewer degrees of freedom and arbitrarily setting nodes.
利用广义样条子域法建立了位移模式,该模式具有自由度少,结点设置灵活之特点。
2) generalized spline subdomain
广义样条子域
1.
Based on the generalized spline subdomain methods, the dynamic displacement modes of the revolutionary shell of the tower is solved.
本文以弹簧约束模拟冷却塔的实际支撑体系,用广义样条子域法建立主体旋转壳动力位移模式。
2.
In order to calculate the cylindrical shells with initial geometrical imperfection, unequidistant B -spline function is used to get the generalized spline subdomain displacement mode whose nodes can be arbitrarily set by interpolating in longitudinal direction and in circumferential direction respectively.
以非等距B_3样条为基函数,采取分别沿子午向和环向插值的方式得到结点任意分布的广义样条子域位移模式,利用内时理论建立了壳体本构方程,并计入了温度的变化。
3) spline Subdomain Method
样条子域法
1.
We adopt spline subdomain method analyzing skew girder group and validating the inerrancy with Ansys,thereby it embodies the superiority of the spline subdomain method.
斜梁结构由于斜支承的存在,导致弯曲和扭转发生耦合效应,采用样条子域法对多根斜梁(含有横梁)进行分析,并采用ANSYS验证程序的正确性,从而体现样条子域法的优越性。
2.
The construction method of spline function and the basic principle on spline subdomain method were described.
介绍了样条函数的构造方法和样条子域法的基本原理,应用样条子域法解决网壳结构的静力分析问题,并与ANSYS有限元法的计算结果做了对比。
3.
In this paper, the arbitrary quadrilateral slab bridges are analyzed by spline subdomain method, in which an arbitrary quadrilateral subdomain with curved sides which comes from the irregular bridge structure dispersion is transformed to a normal rectangular one by mapping of coordinates, the two dimensional spline is adopted to approach the displacement function of this subdomain.
针对平面形状不规则的异形桥梁,采用样条子域法对之进行数值分析。
4) generalized splines
广义样条
1.
This operator is used to definethe correspondence between the optimal controls and certain generalized splines.
首先,通过引入降阶逆向系统揭示了原系统的输入与输出是由某个积分-微分算子联系着的,并利用该算子建立了极小能控制与广义样条的联系;然后在对于输出端的一类较广泛的约束条件下,导出了其输出空间与文[1]的输出空间具有类似的构造性质,从而建立了与文[1]类似的投影公式与递推公式。
5) The singlespline subdomain method
单样条子域法
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条