1) complex fuzzy-value function
复 F 值函数
2) series whose terms are complex fuzzy-value function
复 F 值函数项级数
4) complex f-algebra
复f-代数
5) complex fuzzy number
复 F 数
6) complex functions
复值函数
1.
In proving the theorem of conformal correspond, ν is thought of as complex functions,and independent variable as (u,ν),which is the two real variable instead of a complex number z=u+iν.
在证明"共形对应"定理时,把ν视为复值函数,自变量应理解为(u,ν),是两个实的变量,而不是一个复数z=u+tν,否则,在一般情况下,即F≠0,不存在非零的(复的)积分因子μ,使下面的式子 μ[Edu+(F+F2-EG)dν]=dν=d u+id ν成立。
补充资料:本征函数和本征值
算符弲作用于函数f(r)上, 得出另一个函数。若算符弲作用于一些特定的函数Ui(r)上(i=1,2,...)结果等于一常量乘同一函数,即,
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条