1) semi-linear topological space
半线性拓扑空间
1.
In this paper the definition of semi-linear topological space and locally convex semi-linear topological space is given.
本文定义了半线性拓扑空间及局部凸半线性拓扑空间,研究了这些空间的性质。
2) semi-topological linear spaces
半拓扑线性空间
1.
In this paper, we introduced the notion of semi-topological linear spaces and obtained the some fundamental properties of semi-topological linear spaces.
levine引入半开集和半连续概念以来,半拓扑空间的研究得到迅速的发展,到目前为止,半拓扑空间理论的研究已经比较完善,但是,我们还未见到有人研究半拓扑线性空间。
3) topological vector space
拓扑线性空间
1.
We give a sufficient & necessary condition for the Existence of non-trivial continuous linear functional on top-ological vector spaces, and show that there is no non-trivial continuous linear functional on any quasi-bounded topological vector space.
给出了拓扑线性空间上存在非零连续线性泛函的一个充要条件,并由此证明了在任意拟有界的拓扑线性空间上均不存在非零连续线性泛函。
2.
In the general topology and functional analysis,attention was paid only on topological vector space L~P when P≥1.
讨论了拓扑线性空间LP[a,b]在0
3.
The paper investigates sensitivity analysis of multiobjective optimization in locally compact topological vector spaces instead of metric spaces and obtains much more general results.
利用局部紧的条件 ,将多目标优划问题的灵敏度分析由度量空间推广到拓扑线性空间 ,得到了更一般的结果。
4) Fuzzy topological linear space
Fuzzy拓扑线性空间
5) Topological linear spaces
拓扑线性空间
1.
In this paper, Drop theorem in topological linear spaces is established.
给出了拓扑线性空间中的一个Drop定理。
6) topological linear space
拓扑线性空间
1.
Criteria of left topological inner inverse of linear operator intopological linear space;
拓扑线性空间中线性算子的左拓扑内逆的判据
2.
Equivalent condition of existence of non-continuous linear operator in topological linear space
拓扑线性空间中存在非连续线性算子的充要条件
3.
By using the well-known Browder fixed point theorem and scalarization method,the existence theorems of solution for a class of generalized strong vector quasiequilibrium problems in topological linear spaces are obtained.
利用Browder不动点定理和数值化方法,得到拓扑线性空间中一类广义强向量拟均衡问题的解的存在定理,推广Chen,Hou的一个主要结果。
补充资料:线性拓扑空间
线性拓扑空间
linear topdogical space
线性拓扑空间工如圈rto州心司铆份;姗成助eTo助,加斑耽CKoe nP0c冲皿卿l 同时又是拓扑空间的(线性)向且空间(v以。印ace)L,其中的加法运算和乘以标量的运算关于L中给定拓扑是连续的.见拓扑向纽空间(topofogical卿tor sPaCe).M .H .Bo幼l暇x撇K哺撰葛显良译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条