2) π-left zero semi-group
π-左零半群
1.
In this paper,the author discusses the structure of π-left zero semi-groups,to prove that if S is a finite π-left zero semi-groups such that |E(s)|≤4,then the lattice of congruences C(S) of S is a semi-modular lattice.
通过研究π-左零半群的结构,利用所得的结论证明:若S是有限π-左零半群|E(s)|≤4,则C(S)是半模格。
3) left T-nilpotent semigroup
左T-幂零半群
4) L-fuzzy sub-left(right) zero semigroup
L-Fuzzy子左(右)零半群
5) left zero semiring
左零半环
1.
It is proved that V-idempotent semiring is normal if and only if it is a pseudo-strong right normal idempotent semiring of left zero semirings,and the direct product of left normal V-idempotent semiring with a ring is a pseudo-strong semilattice idempotent semiring of left rings,and some corollaries.
证明了V-幂等半环是正规的当且仅当它是左零半环的伪强右正规幂等半环,并得出左正规V-幂等半环与环的直积是左环的伪强半格幂等半环,及相关结论。
2.
In this paper,we construct the structure of the pseudo-strong right normal idempotent semiring of C-semirings,and then an A-idempotent semiring is a normal idempotent semiring,if and only if it is a pseudo-strong right (normal) idempotent semiring of left zero semirings.
构造了C 半环的伪强右正规幂等半环的结构,证明了A 幂等关环是正规幂等半环,当且仅当它是左零半环的伪强右正规幂等半环,得出这类幂等关环与环的直积是左环的伪强半格幂等关环及相关结论。
3.
and this kind of idempotent semiring is a pseudo-strong right normal idempotent semiring of left zero semirings,This result gets the characterization of the direct product of this kind of idempotent sermiring and a ring as a pseudo-strong right normal idempotent semiring of left rings.
本文讨论了满足a+ab=a+b的幂等半环的结构,给出这种幂等半环是左零半环的伪强右正规幂等半环,并得出这种幂等半环与环的直积是左环的伪强右正规幂等半环。
6) left C-semigroup
左C-半群
1.
In this paper,we investigate another structure of left C-semigroups by means of the wreath product,and the wreath product structure of left C-semigroups is obtained.
利用半群圈积的概念得到了左C-半群的又一种结构——圈积结构。
补充资料:幂零半群
幂零半群
ralpotent semi-group
幂零半群[司脚触吐涨”‘一沙叨p;。,二‘noTeoT皿明。o几犷-pyn“a] 具有零元的半群(~一脚uP)S,且存在n使得罗=0.这等价于S中的恒等式 xl”‘x。二yl‘’‘y。·对于给定的半群,满足上述性质的最小的n称为幂零级(stePof司potency)或幂零类(cla义of汕potency).如果S’=O,则S称为具有零乘法的半群(se而一groupwith~甘山拓pliCa石on).下列关于半群S的条件等价:1)S是幂零的;2)5有一个有限零化子序列(即一个有限长度的升零化子序列,见诣零半群(nil semi一grouP));3)存在k使得S的每个子半群都可作为一个长度(k的理想序列被嵌人. 更为广泛的概念是Ma月H那B意义下的幂零半群(【2』).该名称指这样的半群,对于某个。,它满足恒等式 戈,Y。,其中字戈和Y。归纳地定义如下:X0=x,Y。=y,戈=戈一:u,Y。一,Y。=欢_lu。Xn_,,这里x,夕和“。,…,“。全是变量.一个群是Ma月玉u”B意义下的幂零半群,当且仅当它在通常群论意义下是幂零的(见幕零群(面训七以gro叩)),而恒等式戈=玖等价于这样的事实:该群的幕零类簇n.满足等式戈二Y。的消去半群可嵌人到一个满足同样等式的群中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条