说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义测度μ
1)  signed measure μ
广义测度μ
2)  generalized measure
广义测度
1.
The monotone property about measure is not applied to generalized measure,so this paper discusses some problems about μ=μ1+μ2(μ1,μ2 are two generalized measures) and obtains some relevant properties about complex measure.
测度的单调性质对广义测度而言已不成立,为此,给出测度μ的概念,并得到了复测度μ=μ1+μ2(其中1μ,μ2是两个广义测度)的若干性质。
3)  Signed fuzzy measure
广义Fuzzy测度
4)  extended Carleson measure
广义Carleson测度
1.
Luecking has established a characteristic of extended Carleson measure (a-Carleson measure) represented by an integral inequality of the derivatives of Hp functions in the unit disk.
在单位圆盘上广义Carleson测度与H~p函数导数的关系可以推广到高维半空间上,但只解决了2≤p≤q<∞的情形。
5)  Loeb broad measure
广义Loeb测度
6)  μ-invariant measure
μ-不变测度
1.
As is known to all,μ-invariant measure plays an important role in stochastic pro-cess,and the research of that is significant both in theory and practice.
众所周知,μ-不变测度是随机过程中-类重要的测度,对μ-不变测度的研究无论在理论上还是在应用中,都十分重要。
2.
In this paper,the author discusses the question that when there is a q-process P(t),such that π which is the μ-invariant measure of a given q-pair containing absorb states,is the μ-invariant measure of P(t),and two necessary and sufficient conditions are obtained.
本文对给了全稳定含吸收态的q-对的μ-不变测度,何时存在q-过程P(t),使得π是P(t)的μ-不变测度的问题进行了讨论研究,并给出了两个充要条件。
补充资料:测度μ的支集


测度μ的支集
support of a measure

测度召的支集[劝“犯rt ofameasure召;。oc“Te月‘Me-P。,不之】 集合S(召)=G\G.)(拼),其中G是局部紧Hau-sdroff空间,拼是此空问上给定的正则BOrel测度,G。(召)是使拜(Gt,)=0的最大开集.换句话说,S(拜)是拜被支撑的最小闭集.(这里,如果拜(G\E)二O,那么召支于E.)若S(拜)是紧集,则称#是具有紧支集(eompacts叩Port)的. M.H.Bo认uexoBeKH盛撰【补注】对拓扑空间G上的测度召,当所有#零开子集的并集仍为零测集时,是可以定义召的支集的.在G有可数基,或拜是胎紧的或“是Radon测度(见正则测度(regular measure))时正是这种情形.但若G仅为局部紧以及群不是胎紧的,则就不总是如此了. 当然,对于带拓扑T的拓扑空间G上的测度拜,总是可以定义 S(尸)一G\日{V:V〔T且#(V)=0},但此时不一定有“(G\S(召))二O,而有违于支集的直觉.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条