1) aperiodic matrix
非周期矩阵
1.
Cyclic matrix and periodic, primitive matrix and aperiodic matrix have variant defination mode respectively.
循环矩阵与周期矩阵,本原矩阵与非周期矩阵分别有不同的定义方式。
4) periodic Jacobi matrix
周期Jacobi矩阵
1.
The symmetric tridiagonal matrices and the generalized inverse of periodic Jacobi matrix;
对称三对角矩阵与周期Jacobi矩阵的广义逆
2.
For periodic Jacobi matrix, some new spectral properties of periodic Jaco.
本论文主要研究了一类Jacobi矩阵特征值反问题和一类周期Jacobi矩阵特征值反问题。
3.
If we write the periodic Jacobi matrix (?)_n as:A new inverse eigenvalue problem has put forward as follows: Given the data:λ= {λ_1≤λ_2≤.
本文研究了如下一类周期Jacobi矩阵特征值反问题:将周期Jacobi矩阵(?)_n写成若给定两个实数集λ={λ_1≤λ_2≤。
5) LCA matrix
生命周期矩阵
1.
The methods of life cycle assessment(LCA) coming from environmental evaluation,with the semi-quantitative methods of LCA matrix,are introduced to evaluate the vitality of the forest landscapes.
根据森林旅游资源具有生命周期的特点,引入环境评价中的生命周期评价方法与步骤,并利用生命周期矩阵的半定量方法,对森林景观进行生命力评价。
2.
According to stage of forest landscape the tourism vitality of forest landscape is evaluated by using LCA and LCA matrix,and the correlation of the tourism vitality and the stage and the type of forest landscape is analyzed.
根据森林景观的不同发展阶段,引入环境评价中的生命周期评价方法与步骤,并利用生命周期矩阵的半定量方法,进行森林景观类型的生命力的量化;同时对森林景观的旅游生命力与景观的发展阶段、景观类型进行了关联度分析。
6) periodic tridiagonal matrices
周期三对角矩阵
1.
Strictly diagonally dominant tridiagonal and periodic tridiagonal matrices play vital roles in the theory and practical applications especially,it is very important for studying the boundary value problems by finite difference methods,interpolation by cubic splines,three-term difference equations and so on.
严格对角占优三对角矩阵及周期三对角矩阵在理论和实际应用中起着很重要的作用,特别是在利用有限差分方法、三次样条插值、三次差分方程等方法研究边界值问题中具有重要作用。
补充资料:非奇异矩阵
非奇异矩阵
non-angular matrix:
非奇异矩阵工叨一由卿面r口.翻玩;Heoco6e皿四M帅料a],非退化矩阵(non吐粤冠盼te“坦tr议) 其行列式不等于零的方阵(闪业祀n.让议).对于一个域上的方阵A,非奇异性等价于下述条件之一:l)A是可逆的;2)A的诸行(列)是线性无关的;3)A可以通过初等行(列)变换化为单位矩阵. 0 .A.价aHoBa撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条