2) period symmetric tridiagonal matrix
周期对称三对角矩阵
1.
On the period symmetric tridiagonal matrix inverse problem of generalized eigenvalue;
关于周期对称三对角矩阵的广义特征值反问题
3) periodic tridiagonal matrices
周期三对角矩阵
1.
Strictly diagonally dominant tridiagonal and periodic tridiagonal matrices play vital roles in the theory and practical applications especially,it is very important for studying the boundary value problems by finite difference methods,interpolation by cubic splines,three-term difference equations and so on.
严格对角占优三对角矩阵及周期三对角矩阵在理论和实际应用中起着很重要的作用,特别是在利用有限差分方法、三次样条插值、三次差分方程等方法研究边界值问题中具有重要作用。
4) tridiagonal period matrices
周期三对角矩阵
1.
A class inverse spectiral problem for non-negative irreducible tridiagonal period matrices is proposed.
提出一类非负不可约周期三对角矩阵的逆谱问题 ,讨论了问题的可解性 ,并给出了问题有解的充要条件及算例 。
5) unsymmetric tridiagonal matrices
非对称三对角矩阵
6) symmetric tridiagonal matrix
对称三对角矩阵
1.
This paper provides two FORTRAN subroutines for the two computational problems of the symmetric tridiagonal matrix (solution of the system of liner algebraic equations, and computation of the generalized eigenvalues and eigenvectors).
提供两个高效而实用的FORTRAN程序(例行子程序形式),用于对称三对角矩阵的两个计算问题(其一是线性代数方程组的求解,其二是广义特征值问题的计算)。
2.
First, an unsymmetric tridiagonal matrix T is transformed into a symmetric tridiagonal matrix T *.
首先将非对称三对角矩阵T化为对称三对角矩阵T ,对于对称三对角矩阵T 和位移σ ,给出由T 求其简化矩阵 ^T的算法。
3.
The convergence of QL algorithm with shifts for symmetric tridiagonal matrix is discussed and a sufficient condition is given by which shifts are to be chosen to make sure that the top-left diagonal elements converges to an eigenvalue of the matrix.
主要讨论了对称三对角矩阵带位移的 QL方法的收敛性问题。
补充资料:块三对角矩阵
分子式:
CAS号:
性质:一种特定形式的分块矩阵(分块矩阵的元素均为子矩阵),矩阵的主对角线及其相邻对角线上的子矩阵为方阵,其余子矩阵为零矩阵。块三对角矩阵的运算与三对角矩阵类似。
CAS号:
性质:一种特定形式的分块矩阵(分块矩阵的元素均为子矩阵),矩阵的主对角线及其相邻对角线上的子矩阵为方阵,其余子矩阵为零矩阵。块三对角矩阵的运算与三对角矩阵类似。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条