说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 紧Riemann流形
1)  compact Riemann manifolds
紧Riemann流形
2)  n dimension compact Riemann manifold
n维紧Riemann流形
1.
Gets the regularity on weakly harmonic maps from second dimension Riemann to n dimension compact Riemann manifold with the description in geometry and multi-complex variable theory.
借助于几何上与分析上的精细刻画,并利用多复变理论,得到了从二维Riemann到n维紧Riemann流形的弱调和映射的正则性结果。
3)  Riemann manifold
Riemann流形
1.
Euler equation of weakly harmonic maps from high dimension Riemann manifold to homogeneous space;
高维Riemann流形到齐次空间弱调和映射的Euler方程
2.
In this paper,the geometry of the 2-harmonic hypersurfaces in Riemann manifold is studied,and we obtained two sufficient condictions under which a 2-harmonic hypersurface turns into a minimal hypersurface.
研究了Riemann流形中的2-调和超曲面,给出了2-调和超曲面成为极小的两个充分条件。
3.
Let M be a compact n-dimensional Riemann manifold, RicM≥n-1, Let d denote the diameter of M.
M为紧致n维Riemann流形 ,Ricci曲率具有正下界n- 1 ,d是M的直径 ,本文证明了其Laplace算子的第一特征值λ1≥ π2d2 + n- 12 。
4)  Riemannian manifold
Riemann流形
1.
Weighted Laplacian operator on Riemannian manifolds;
Riemann流形上的加权Laplace算子
2.
By deriving sharp gradient estimates for the positive solutions of the heat equation and deducing some Harnack type inequalities, we obtain some quantitative estimates of the lower bounds for heat kernels and higher eigenvalues on Riemannian manifold with Ric (M)≥-K (K>0).
对Ricci曲率具负下界的紧Riemann流形,本文获得了热方程正解优化的梯度估计及Harnack不等式,证明了高阶特征值下界定量估计的猜想。
3.
Let A be the Laplace-Beltrami operator on a Riemannian manifold M.
设Δ是Riemann流形M上的Laplace-Beltrami算子。
5)  Quasi Riemann manifold
准Riemann流形
6)  Riemannian manifold
Riemann 流形
1.
We obtained a vanishing theorem for L~2 geodesic vector fields on complete Riemannian manifolds together with a condition that Einstein manifold is isometric to a sphere.
本文得到完备 Riemann 流形上 L~2测地向量场的一个消没定理,同时给出Einstein 流形与一球面等距的一个条件。
补充资料:Riemann流形


Riemann流形
Riemannian manifold

Rieltlann流形【Ri~.吐叨,诩丽创d;入M阴。即M”。-r006pa3He」 带有Rien.lul度最(RienlanIUall能tric)的微分流形(山价rentinble rnan而kl).本质上,RieIT以nn流形与R记n栩团口空间(Riernonltian sPace)是相同的. M.H.B成那xoBcK戒撰播养廉译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条