1) discrete random variable
离散随机变量
1.
Strong deviation theorems of discrete random variable sequence
离散随机变量序列的强偏差定理
2) discrete random variables
离散随机变量
1.
In this paper the notion of logarithmic likelihood ratio,as measure of dependence of a sequence of arbitrary discrete random variables,is intreduced.
本文引进对数似然比作为任意离散随机变量序列相依性的一种度量,并通过限制似然比给出样本空间的某种子集,在这种子集上得到了离散随机变量序列的一类强极限定理,它包含若干经典强大数定律为其特例。
2.
In this paper the likelihood ratio is introduced as a measure of dependence ot the sequences of discrete random variables, and by using this concept, a class of strong laws considered on certain subsets of the sample space, which include some usual strong laws of large numbers as their corollaries, are obtained.
本文引进似然比作为离散随机变量序列相依性的一种度量,并利用这个概念给出一类在样本空间的某种子集上考虑的强律,它包含若干通常的强大数定律为其特
3) discrete random variable
离散型随机变量
1.
In a given period the seasonal goods can be ordered at a discount price,and the demand for the goods is an issue of discrete random variable.
讨论了在一个时期内商品的订购价格有折扣,而且该商品的需求量是离散型随机变量的订购问题,得出了使利润最大化的最佳订购量的计算方法。
2.
In the paper, we have extended CVaR of linear portfolios about discrete random variable of scenario models in space of one dimension to CVaR of linear portfolios of multinomial distribution and multi-Poisson power distribution in the hyperspace.
本文把离散型随机变量为一维情景预设模型时线性投资组合的CVaR推广到风险因子服从多项分布和多维Poisson分布时线性投资组合的CVaR;此外,利用CVaR与ES在随机变量可积时的相等关系推导出连续型风险因子服从多维逻辑斯特分布与多维指数幂分布时线性投资组合的CVaR;最后给出一种特殊的连续型风险因子线性投资组合的CVaR。
3.
CVaR of linear portfolios about discrete random variable of scenario models in space of one dimension is been extended to CVaR of linear portfolios of multinomial distribution and multi-Poisson power distribution in the hyperspace.
文章把离散型随机变量为一维情景预设模型时线性投资组合的 CVaR 推广到风险因子服从多项分布和多维 Poisson 分布时线性投资组合的 CVaR。
4) Discrete Type Random Variable
离散型随机变量
1.
In this paper, we study the distribution law of order statistic of discrete type random variable.
本文论述了离散型随机变量的次序统计量的分布律及其有关推论 。
5) discrete valued random variable
离散值随机变量
6) discrete random variables
离散型随机变量
1.
Conditional independence of the discrete random variables and its properties
离散型随机变量的条件独立及其性质
2.
Understanding of structure failure probability by application of combined probability distribution of discrete random variables
应用离散型随机变量的联合概率分布理解结构失效概率
补充资料:离散变量与连续变量
分子式:
CAS号:
性质: 符号x如果能够表示对象集合S中的任意元素,就是变量。如果变量的域(即对象的集合S)是离散的,该变量就是离散变量;如果它的域是连续的,它就是连续变量。
CAS号:
性质: 符号x如果能够表示对象集合S中的任意元素,就是变量。如果变量的域(即对象的集合S)是离散的,该变量就是离散变量;如果它的域是连续的,它就是连续变量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条