1) even stage
偶数级
2) even-odd rule
偶数级,偶数阶
3) even power p-series
偶次p-级数
4) even-order
偶数级衍射
5) even number
偶数
1.
On several results of even number partition;
关于偶数分拆的几个结果
2.
On the ground of this search algorithm , the equivalent proposition of the Goldbach Conjecture for the even number as well as the equivalent proposition of the twin prime conjecture are deduced.
在这种搜索算法的基础上 ,既得到了孪生素数猜想的一个等价命题 ,也得到了偶数哥德巴赫猜想的一个等价命
3.
By the resolution of a mathematical problem,this paper carries out a further research of using property of the even number and odd numbers to get the relevant theorem of resolve this problem,and explain concrete application by an example.
通过一个数学问题的解决,由此提出了进一步研究的问题,利用奇数与偶数的有关性质,得到了解决这一类问题的有关定理,并且通过例子说明了定理的具体应用。
6) even
[英]['i:vn] [美]['ivən]
偶数
1.
Vertex sets with even distance between any two vertices and its construction method
任意两点间距离均为偶数的点集及构造方法
2.
We present a class of anti-sociable numbers which are even.
给出了一类偶数中的孤立数。
3.
The papergives construction magic square of even by descnt method.
奇数阶幻方早已被完成,本文通过降阶法给出偶数阶幻方的完成。
补充资料:二重数和对偶数
二重数和对偶数
double and dual numbers
【补注】对一个R上有单位元的结合代数A,旧称为超复数系(s梦怡mofhyl祀rcomPlexnt加吐芜r),A中的元素称为超复数.在同构意义下,只有三个二维的这种代数,即:复数、对偶数和二重数.二孟数和对偶数【血汹众出日由.】.朋址巧;口加如ue,口ya月“.e,。e月a」 形如a+be的超复数,其中a,b是实数,如果满足扩二1,就是二重数;如果满足扩=0,就是对偶数(见超复数(hyl姆沈omPlexn切叮ber)).二重数和对偶数加法都定义为: (a1+甄e)十(几+乓e)=(a;十气)+(b,+瓦)。·二重数乘法定义为:(a,+b,e)(几+乓e)二(a」气+b,气)+(a,瓦+气b,)e,对偶数乘法定义为: (a,+bte)(几+乓e)=a.几+(al瓦+姚bl)e.复数、二重数、对偶数也分别称为双曲型、椭圆型、抛物型复数.这些数有时用于表示刀。加月eBcKH认,Rleff以nn和Euclid三维空间中的运动(例如,见姆旋演算(heliealealcul璐)). 二重数或对偶数都形成实数域上二维结合交换代数(基为1和e).与复数域不同的是,这两个代数有零因子.二重数代数中所有零因子形式为a士ae.二重数代数可分裂为两个实数域的直和,因此它有另一名称—分裂复数(sPlitting comPlexn切rnber).二重数还有一个名称—仿复数(p~。mPlexn山n比rs).对偶数代数不仅在实数域R上而且可以在任一域或交换环上讨论.设A是一交换环,并设M是A模,定义A模直和A田M,其乘法为 (a,m)(a‘,。‘)=(aa‘,溯‘+a’,).这是一个交换A代数,记为毛(M),它称为关于模M的对偶数代数(al罗bra of dualn山nbers).A模M等同于代数毛(明中的一个理想,它是增广同态 £:毛(M)~A,((a,m)~a)的核.理想的平方砂=o,同时有毛(帕/M竺A.若A是正则环,则其逆也成立:设B是A代数,M是B的一个理想,且膨二0,B/M竺A,那么B”毛(娜.这里M被视为A模(「41). 若M=A,则代数毛《材)(可记为毛)同构于多项式代数A【T]关于理想洲的商代数.很多A模性质可被阐述为几(材)的性质.因此,很多A模问题可归结为环论中相应的问题(12]). 设B是任一A代数,职:B~A是一同态,并设日:B~M是B的在A模M中取值的导子(见环中的导子(deri份bon in a nllg)),M在同态毋下可视为B模.映射日:B~毛《M),(b~(毋(b),日(b)”是A代数同态.反之,任给一A代数同态f:B~几(M),记。‘:毛(间~M是毛(闭到M之上的投影,则合成映射。‘。f:B~M是B的在M中取值的A导子,这里M被视为对应于同态。。f:B~A的B模.二重数与对偶数的这个性质对描述概形范畴的任一函子的切空间很有益处.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条