说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 振荡奇异积分算子
1)  oscillatory singular integral operator
振荡奇异积分算子
1.
In this paper we prove the H α,p q (ω 1,ω 2) and HK α,p q (ω 1,ω 2) boundedness of oscillatory singular integral operators considered by D.
Pan所考虑过的振荡奇异积分算子在Herz型Hardy空间上的有界性,这些结果推广了[1]中相应的定
2)  generalized Calderón-Zygmund kernel
多线性振荡奇异积分算子
1.
Weighted L~p-boundedness of multilinear oscillatory singular integral with generalized Calderón-Zygmund kernel
广义Calderón-Zygmund核的多线性振荡奇异积分算子的加权L~p-有界性(英文)
3)  oscillatory singular integral
振荡奇异积分
1.
Ricci and Stein showed that some oscillatory singular integral operators are bounded on Lp(Rn)(1<p<∞).
Ricci和Stein证明了一类振荡奇异积分算子的Lp(Rn)(1振荡奇异积分算子的Lp(Rn)(1振荡奇异积分算子的加权Lp有界结果。
2.
In this paper, we show that the weightes norm inequality  ∫ R n |Tf(x)| pw(x)dxC∫ R n |f(x)| pM +1 w(x) dx, 1<p<∞,  holds for oscillatory singular integral operators with polynomial phases, where M is the Hardy Littlewood maximal operator and M k is M iterated k times, is the integer part of p .
本文证明:对于带多项式相函数的振荡奇异积分算子,权模不等式∫Rn|Tf(x)|pw(x)dxC∫Rn|f(x)|pM[p]+1w(x)dx,1<p<∞成立,其中w是非负局部可积的权函数,Mk表示Hardy-Litlewood极大算子的k次迭代,[p]表示p的整数部
3.
It is proved that the oscillatory singular integral operators (convolution type or non-convolution type) are bounded from the non-homogeneous Hardy spaces HK_q ̄(a.
令0<p=1<q<∞,α=n(1/p-1/q),证明了振荡奇异积分算子是从HK到(Rn)的有界算子,只要p,q满足一定关系。
4)  Multilinear oscillatory singular integral
多线性振荡奇异积分
1.
A class of multilinear oscillatory singular integral operators is studied and their boundedness on Lebesgue spaces L p(R)(1<p<∞) is obtained.
考虑了一类多线性振荡奇异积分算子并获得了其在一维 Lebesgue空间 Lp(R) (1
5)  theta(t)_type oscillatory singular integral
theta(t)型振荡奇异积分
6)  Oscillatory Integral Operator
振荡积分算子
1.
Some Problems on Commutators Generated by Singular Integral Operators and Oscillatory Integral Operators;
粗糙核奇异积分算子及振荡积分算子的交换子的有界性问题
补充资料:delaVallée-Poussin奇异积分


delaVallée-Poussin奇异积分
e la Vallee- Poussin singular integral

山hV叨触一P仪.菌n奇异积分【deh、7al应~P侧目n血-多面了加雌阳】;Ba月月e一flyeeeoac“Hry月,PHM.““Ter-pa月」 形式为 。‘、::、一李,萝理牛i、(x十:)cosZ·冬己。 乙兀L小一1)::戈的积分(亦见de h Vall倪一P侧对n求和法(de h vall‘e-Po哪insumrrntionmethod)).对于在(一的,田)上连续的、以2二为周期的函数f林),序列气(f;x)一致收敛于f(x)(【1」).如果在点x上 (父,(!)比今}一,(·,,则当。~的时,玖(f;x)~f(x),下列等式成立(12」): 。。、:,、一、(x、一工竺工主)、。「生1. 刀Ln」[补注]符号(Zm)!!表示Zm(2m一2)二2(m项),(2脚一1)!!二(2m一z)(Zm一3)二弓(m项),因此, (2n)!!二2,”(n!), (知一l)!!(Zn)!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条