1) Raman self-frequency shift effect
拉曼自频移效应
2) raman self-frequency shift
拉曼自频移
1.
In this paper, optical-quantization in ail-optical analogy-to-digital converter (ADC) has been achieved based on the Raman self-frequency shift in a photonic crystal fiber (PCF) by numerically solving the generalized nonlinear Schrodiger (GNLS) equation, where the split-step Fourier method (STFM) is used.
采用分步傅里叶方法对广义薛定谔方程进行数值求解,研究了光子晶体光纤(PCF)中拉曼自频移用于全光模数转换器(ADC)中的光量化过程。
3) Self-Raman effect
自拉曼效应
4) Raman shift
拉曼频移
1.
By numerical analysis, it is shown that other vibrational Raman shifts and .
通过实验结果与理论计算值的比较 ,证明除了H2 的振动拉曼频移量 4 15 4 6cm- 1 外 ,还有多个振动及转动拉曼频移量共同参与作用 ,从而产生了从紫外到红外众多波长的受激拉曼散射光 。
2.
The relative Raman shift △ω dependant stress σ of single -Si and poly - Si was derived, through which the systematic formulas of stress can be obtained.
讨论了利用拉曼光谱来定量分析由单晶硅和多晶硅材料构成的微机械结构应力测试方法,说明了该方法的基本原理,推导了单晶硅应力σ与相对拉曼频移△ω及多晶硅应力τ与相对拉曼频移△ω的关系,使基于硅体系的拉曼应力测试公式体系化。
5) Raman effect
拉曼效应
1.
The Study of Raman Effect in the Liquid-core Optical Fiber of CCl_4 by Group Theory;
应用群论研究液芯光纤中CCl_4的拉曼效应
2.
Then we present the nonlinear processes in silicon waveguides such as Raman effect、 four-wave mixing and wavelength conversion efficiency,as well as progresses in optical devices and technology due to these nonlinear effects.
再介绍在硅波导内的非线性光学过程(拉曼效应,四波混频,波长转换效应等),以及这些效应所带来的在光器件和技术上的进步。
3.
Han studied Raman effect of organic compounds with Prof.
2 0世纪 30年代 ,在台北帝国大学随松野吉松教授从事有机化合物拉曼效应的研究 ,合作发表论文 7篇 ,独立发表论文 1篇。
6) Raman effect
拉曼氏效应
补充资料:表面增强拉曼效应光谱
分子式:
CAS号:
性质:吸附在粗糙化金属表面的化合物由于表面局域等离子激元被激发所引起的电磁增强(即物理增强),以及粗糙表面上的原子簇及吸附其上的分子构成拉曼增强的活性点(即化学增强),这两者的作用使被测定物的拉曼散射产生极大的增强效应。其增强因子可达103~107,已发现能产生SERS的金属有Ag,Au,Cu和Pt等少数金属,以Ag的增强效应为最佳,最为常用。此技术具有选择性好和灵敏度高的优点,实际检测限可达10-12克级。可以区分同分异构体、表面上吸附取向不同的同种分子等,是研究表面和界面过程的重要工具,是定性鉴定化学结构相近化合物的有力手段。可用作液相色谱分析的检测器。在环境化学、生物化学中有机化合物的分析已有广泛应用。
CAS号:
性质:吸附在粗糙化金属表面的化合物由于表面局域等离子激元被激发所引起的电磁增强(即物理增强),以及粗糙表面上的原子簇及吸附其上的分子构成拉曼增强的活性点(即化学增强),这两者的作用使被测定物的拉曼散射产生极大的增强效应。其增强因子可达103~107,已发现能产生SERS的金属有Ag,Au,Cu和Pt等少数金属,以Ag的增强效应为最佳,最为常用。此技术具有选择性好和灵敏度高的优点,实际检测限可达10-12克级。可以区分同分异构体、表面上吸附取向不同的同种分子等,是研究表面和界面过程的重要工具,是定性鉴定化学结构相近化合物的有力手段。可用作液相色谱分析的检测器。在环境化学、生物化学中有机化合物的分析已有广泛应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条