1) Raman shift
拉曼位移
1.
So the spectral profile of stretching vibrational modes of CH_3 and CH_2 gradually changes and the Raman shift moves to higher frequency with increasi.
由于压力效应大于温度效应,随温度压力的增大CH3,CH2对称和反对称伸缩振动的拉曼位移均向高频方向移动,说明C—H键键能在增大。
2.
So the spectral profile of stretching vibrational modes of C—H gradually changes and the Raman shift moves to higher frequency with increasing temperature and pressure, indicating.
由于压力效应大于温度效应,随温度压力的增大,νCH区伸缩振动的拉曼位移向高频方向移动,说明C—H键键能在增大;而O—H伸缩振动峰的相对面积随温度压力的增大而增大,说明对C—H键而言,O—H键总强度是增加的,由此推测在地质条件下,压力可能阻碍或延长了干酪根的降解生烃过程。
3.
The result shows that the spectral profile of stretching vibrational modes of CH and OH gradually changes and Raman shift moves to higher and lower frequency respectively with increasing pressure, which indicates that the energy of C—H bonding increases with pressure, and the influence of hydrogen bonding on O—H function group is greater than that of pressure.
其中νCH区伸缩振动随压力增大 ,拉曼位移向高频方向移动 ,说明C—H键键能在增大 ;而νOH区伸缩振动随压力增大 ,拉曼位移则向低频方向移动 ,表明氢键对O—H基团的影响大于压力效应。
2) Raman spectra
拉曼位移
1.
The present paper investigates the Raman spectral character of liquid 2-methylpentane by an experiment at the pressure of 0-1.
实验结果表明,2-甲基戊烷的拉曼位移在2800~3000cm-1范围内的CH3和CH2的伸缩振动谱峰随着压力的增大均连续向高波数位移,其拉曼位移与压力的关系可以表示为νas(CH3)=0。
2.
The present paper investigates Raman spectral characters of liquid glycerin by the experiment at the pressure of 0-1.
实验结果表明,丙三醇的拉曼位移在2 800~3 000 cm-1范围内的CH和CH2的伸缩振动谱峰随着压力的增大均连续向高波数位移,其拉曼位移与压力的关系可以表示为:ν(CH)=0。
3) Raman shift
拉曼频移
1.
By numerical analysis, it is shown that other vibrational Raman shifts and .
通过实验结果与理论计算值的比较 ,证明除了H2 的振动拉曼频移量 4 15 4 6cm- 1 外 ,还有多个振动及转动拉曼频移量共同参与作用 ,从而产生了从紫外到红外众多波长的受激拉曼散射光 。
2.
The relative Raman shift △ω dependant stress σ of single -Si and poly - Si was derived, through which the systematic formulas of stress can be obtained.
讨论了利用拉曼光谱来定量分析由单晶硅和多晶硅材料构成的微机械结构应力测试方法,说明了该方法的基本原理,推导了单晶硅应力σ与相对拉曼频移△ω及多晶硅应力τ与相对拉曼频移△ω的关系,使基于硅体系的拉曼应力测试公式体系化。
4) raman redshift
拉曼红移
6) raman self-frequency shift
拉曼自频移
1.
In this paper, optical-quantization in ail-optical analogy-to-digital converter (ADC) has been achieved based on the Raman self-frequency shift in a photonic crystal fiber (PCF) by numerically solving the generalized nonlinear Schrodiger (GNLS) equation, where the split-step Fourier method (STFM) is used.
采用分步傅里叶方法对广义薛定谔方程进行数值求解,研究了光子晶体光纤(PCF)中拉曼自频移用于全光模数转换器(ADC)中的光量化过程。
补充资料:拉曼位移
分子式:
分子量:
CAS号:
性质:见拉曼光谱。
分子量:
CAS号:
性质:见拉曼光谱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条