1) reduced Grbner-basis
既约Grbner基
2) strong reduced Grbner bases
强既约Grbner基
1.
Therefore,this paper presents the definition and algorithm of strong reduced Grbner bases in rings of differential operators and proves the exi.
为此,给出了微分算子环的强既约Grbner基的定义及算法,并证明微分算子环的强既约Grbner基的存在性和唯一性。
3) weak reduced Grbner bases
弱既约Grbner基
1.
Nabeshima presents the definition and algorithm of weak reduced Grbner bases in rings of differential operators,but weak reduced Grbner base is not unique.
Nabeshima给出了微分算子环的弱既约Grbner基的定义和算法,但弱既约Grbner基并不唯一。
4) reduced Grobner-basis
约化Gr(?)bner基
5) Grbner bases
Grbner基
1.
The multivariate spline ideal Grbner bases on the simple partition;
简单剖分上的多元样条理想Grbner基
2.
Implementation,comparison and improvement of the methods of characteristic set,Grbner bases and well-behaved bases;
特征列、Grbner基和良性基方法的实施、比较和改进
3.
In order to improve the decoding efficiency of error-correct codes,a method based on Grbner bases for modules was presented for solving the key equation in decoding error-correct codes so as to find the error location and error patterns.
针对如何提高纠错码译码过程中的效率问题,讨论了利用模的Grbner基理论计算纠错码中错误位置和错误值。
6) Grbner basis
Grbner基
1.
Application of Grbner basis to the shortest route;
Grbner基理论在最短路径问题中的应用
2.
Lifting algorithms for Grbner basis computation of invariant ideals
不变理想的Grbner基提升算法(英文)
补充资料:既约多项式
又称“不可约多项式”。次数大于零的有理数系数多项式,不能分解为两个次数较低但都大于零的有理数系数多项式的乘积时,称为有理数范围内的“既约多项式”。在实数或复数范围内,也有相应的定义。实数范围内的既约多项式是一次或某些二次多项式,复数范围内的既约多项式必是一次多项式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条