说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> M-投射
1)  M-projective
M-投射
2)  M-projective module
M-投射模
3)  M-projective dimension
M-投射维数
1.
The M-projective dimensions of modules and M-global dimensions of rings were introduced.
引进了模的M-投射维数和环的M-总体维数的概念,采用比较新颖简便的方法,得到了环R上的矩阵环Mn(R)的(R n×1×RM)-总体维数(Rn×1RM)LgdMn(R)和环R的M-总体维数MLgdR之间相等的关系。
2.
In this paper,a concept of M-projective dimensions of modules and M-global dimensions of rings was introduced.
引进模的M-投射维数和环的M-总体维数的概念,采用比较简便的方法,得到环R的M-总体维数和环eRe的(eRRM)-总体维数之间的相等关系。
3.
In this paper, we introduced the M-projective dimensions of modules and the M-left global dimensions of rings and it is proved that the (R~ 2×1 RM)-left global dimension of Morita Context T=RReeReRe is equal to the M-left global dimension of ring R.
我们引进了模的M-投射维数和环的M-左总体维数的概念,采用比较新颖简便的方法,得到了一类Morita Contexts T=R ReeR eRe,e∈R,e2=e和环的M-左总体维数之间的相等关系。
4)  M projective cover
M-投射复盖
5)  small M-projective modules
小M-投射模
6)  pseudo-M-projective modules
伪M-投射模
补充资料:范畴的投射对象


范畴的投射对象
projective object of a category

  范畴的投射对象t户水浦veJ杠t of a.魄0叮;叩oe-川阳“10眼盯K瑰rop“HI 将自由群,自由模等等的收缩核(或直和项)的性质形式化的一个概念‘范畴凭的对象P叫作投射的(proJ咖记),即指对任意满态射(ePlmorphism)v二A、B和任意态射v:P~B,必存在态射下‘二P一A,使下=下‘v.换言之,对象尸是投射的,是指从只到集范畴弓的表示函子H,(X)=Hom(P,X)将凭中的满态射变成马中的满映射. 例.1)在集范畴中,每个对象都是投射的.2)在群范畴中,仅有自由群是投射的.3)在有l的结合环A的左模范畴、纽中,一个模是投射的,当且仅当它是自由模的直和项.对使得每个投射模都是自由模的环的刻画构成了Serre问题(Serre proUeln)的内容.4)在范畴\叭中,所有的模都是投射的,当且仅当环A是经典半单的.5)在从一个小范畴(521〕al』口t4男ry)勿到集范畴弓的函数范畴子(勿,弓)中、每一个对象都是投射的,当且仅当勿是离散范畴. 在投射对象的定义中,有时假定函子H,并不将全体满态射,而仅将某一类特殊的满态射C变成集合的满射.特别地,若C是双范畴(介,C,叭)的容许满态射类,则P叫作容许投射对象(adm毗ible pro-Jo以jVe objeCt).例如在某些群簇中,簇中的自由群是相对于所有集合满同态类的容许投射对象,但不是投射对象,因为存在不是集合满同态的满态射. 与投射对象对偶的概念是内射对象〔injeCt主记ob-」ect)投射和内射对象的基本作用最先在同调代数中被研究.在模范畴中,每个模均可表示为投射模的商.这一性质使得可以构造投射分解并研究各种各样的同调维数.【补注】例l中关于集范畴中的每个对象均为投射对象的断言也是阐述选择公理(a刀。m of ehi〕iee)的一种途径,上述关于特殊范畴中投射对象的其他大部分断言都以某种方式涉及选择公理例如自由Ab日群是投射的这一论断已被证明与选择公理等价(仁All),尽管每个Abe]群是投射对象的商这一论断要弱一沙匕
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条