1) finally κ compact space
κ-紧空间
1.
We prove that κ product of any family of finally κ compact spaces is also finally κ compact if and only if κ is strongly compact cardinal.
本文指出一族κ-紧空间的κ-乘积仍为κ-紧的充分必要条件是κ为紧致基
2) κ-metacompact space
κ-亚紧空间
1.
The notion of basemetacompact space is introduced and the following is studied: the relation between a base-κ-metacompact space and its subsest,the relation between base-κ-metacompact spaces and κ-metacompact spaces,the product of a base-κ-metacompact space and a compact space,and that open-closed finite-to-1 map preserves base-κ-metacompactness.
引入基-κ-亚紧空间的概念,研究了基-κ-亚紧空间与其子空间的关系,基-κ-亚紧空间与κ-亚紧空间的关系,基-κ-亚紧空间与紧空间的乘积,既开又闭的有限到一映射保持基-κ-亚紧性。
3) base-κ-metacompact space
基-κ-亚紧空间
1.
The notion of basemetacompact space is introduced and the following is studied: the relation between a base-κ-metacompact space and its subsest,the relation between base-κ-metacompact spaces and κ-metacompact spaces,the product of a base-κ-metacompact space and a compact space,and that open-closed finite-to-1 map preserves base-κ-metacompactness.
引入基-κ-亚紧空间的概念,研究了基-κ-亚紧空间与其子空间的关系,基-κ-亚紧空间与κ-亚紧空间的关系,基-κ-亚紧空间与紧空间的乘积,既开又闭的有限到一映射保持基-κ-亚紧性。
4) base-κ-metacompact space relative to X
相对于X的基-κ-亚紧空间
5) κ-subparacompactness
κ-次仿紧
1.
It is proved that the hereditarily collectionwise normality and the hereditarily σ-collectionwise normality can be preserved by the inverse limit spaces under the assumptions of hereditarily κ-subparacompactness and hereditarily κ-screenability,respectively.
分别证明了仅在假定逆极限空间是遗传κ-次仿紧的条件下,遗传集体次正规性即可被其逆极限空间所保持;在假定逆极限空间是遗传κ-可遮的条件下,遗传σ-集体正规性可被其逆极限空间保持。
6) κ-paracompact
κ-仿紧
1.
It is proven that the hereditari-ly σ-expandabilities(hereditarily σ-discretely expandabilities) can be preserved by the inverse limit space under the condition of hereditarily κ-paracompactness.
研究了四类可膨胀空间的逆极限性质,主要证明了在逆极限空间是遗传κ-仿紧条件下遗传-σ(离散)可膨胀性能够被逆极限空间所保持,在逆极限空间是遗传κ-亚紧条件下遗传几乎σ-(离散)可膨胀性也能够被逆极限空间所保持。
2.
Generally, for a regular uncountable cardinal κ, what is the sufficient and necessary condition of GO-space being κ-paracompact? we solved this problem.
早在1 95 4年,Gillman和Henriksen就证明了一个GO-空间是仿紧空间的充分必要条件,那么,更一般地,任给一个正则不可数基数κ,GO-空间是κ-仿紧空间的充分必要条件是什么呢?本文回答了这个问题。
补充资料:三丁氧基(2,4-戊二酮根合-κO,κO')-锆
CAS:85626-36-4
中文名称:三丁氧基(2,4-戊二酮根合-κO,κO')-锆
英文名称:tributoxy(2, 4-pentanedionato-.kappa.O, .kappa.O')-Zirconium; Zirconium,tributoxy(2,4-pentanedionato-.kappa.O,.kappa.O')-
中文名称:三丁氧基(2,4-戊二酮根合-κO,κO')-锆
英文名称:tributoxy(2, 4-pentanedionato-.kappa.O, .kappa.O')-Zirconium; Zirconium,tributoxy(2,4-pentanedionato-.kappa.O,.kappa.O')-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条