1) Grassmann bundle
Grassmann丛
2) G-Grassmann manifold
G-Grassmann流形
3) Grassmann algebra
Grassmann代数
1.
In this paper,the simple proofs of n-dimensional sine theorem and cosine theorem in E\+n are gilen by theory of Grassmann algebra.
利用Grassmann代数的基本知识,给出了n维欧氏空间En中n维亚弦定理和n维余弦定理的证明。
4) Grassmann manifold
Grassmann流形
1.
Grassmann manifold G(2,8) and complex structures on R~8;
Grassmann流形G(2,8)和R~8上的复结构
2.
In this paper, it is proved that generalized Grassmann manifold is a Riemannian manifold with constance scalar curvature, and one inequality for matrices is used to prove a non-eistience theorem on harmonicmaps to generalized Grassmann manifold.
本文在得到广义Grassmann流形具有常数数量曲率的结果的基础上,利用一个矩阵不等式证明了到广义Grassmann流形的调和映照的一个不存在性定理,并推广了吴光磊等人的结果。
3.
In this paper,we use Clifford algebra to construct a map γ:G(2,8)→S 6,which makes Grassmann manifold G(2,8) a fibre bundle with the fibre CP 3.
利用Clifford代数建立映射γ :G(2 ,8)→S6,它使Grassmann流形G(2 ,8)成为单位球面S6 上的纤维丛 ,纤维型是复射影空间CP3。
5) complex Grassmann manifold
复Grassmann流形
1.
We use the generalized Frenet formulas to study the isotropy of harmonic maps from surfaces into complex Grassmann manifolds and provide a new sufEicient condidon to ensure the isotropy of hannonic maps.
利用广义Frenet公式,研究曲面到复Grassmann流形调和映照的迷向性质,给出了调和映照迷向的新的充分条件。
6) Grassmann line geometry
Grassmann线几何
补充资料:丛丛
1.形容人或物聚集的样子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条