1) Local Lipschitz funcation
局PLipschitz函数
2) overall situation function
全局函数
1.
0 MFC programming process, through the example form, has produced three kind of overall situations variables and the overall situation function three essential methods.
0的MFC程序设计过程中,通过实例形式,给出了三种全局变量和全局函数的三种基本方法。
3) locally Lipschitz function
局部Lipschitz函数
1.
In this paper,the solution existence for quasilinear hemivariational inequality was analyzed using the variational method and the nonsmooth critical point theory of the locally Lipschitz function.
我们的方法是变分法及局部Lipschitz函数的非光滑临界点理论。
2.
This paper discusses the generalization of the deformation theorem and its application,and some new critical point theorems of locally Lipschitz functions are given based on some improved classical critical point theorems.
证明了一个形变定理,并由此得到局部Lipschitz函数的几个临界点定理,其结果改进了几个经典的临界点结论。
3.
In the present paper,some minimax theorems of locally Lipschitz functions are given by the Ekeland variational principle and tow critical point theorems are improved.
文章由Ekeland变分原理得到局部Lipschitz函数的几个极大极小定理,并改进了已有的两个临界点定理。
4) local work function
局域功函数
1.
In this paper, we report the local work function measurements on the Cu(111)-Au, and Cu(111)-Pd surfaces with scanning tunneling microscopy (STM).
用扫描隧道显微镜 (STM)对Cu(111) Au和Cu(111) Pd表面的局域功函数进行了研究 。
5) local base function
局部基函数
6) Global implicit function
全局隐函数
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条