1) local shape function
局部形状函数
1.
The estimation of local shape functions is classified into three cases.
介绍了多层面单位分割隐函数曲面方法中的隐函数拟合概念,把局部形状函数的估计分为3种情况。
2) Local shape function(LSF)
局部成形函数(LSF)
3) local shape parameter
局部形状参数
1.
A class of new polynomial basis functions with two local shape parameters λi,μi is presented to construct B-spline curves with multiple local shape control parameters,which is an extension of the classical cubic uniform B-spline basis functions.
造型实例表明,新曲线不仅具有灵活的局部形状可调性和更强的描述能力,而且可以在不改变曲线G1连续性和不影响曲线其他各段形状的同时,通过改变局部形状参数对曲线每段的形状进行多种方式的局部调整,为曲线和曲面的设计提供了一种有效的新方法。
2.
In order to introduce B-spline curves with local shape parameters, two classes of polynomial blending functions with local shape parameters are presented in this paper.
为了使形状参数具有局部修改功能,给出了两类带局部形状参数的调配函数,它们都是三次均匀B样条基函数的扩展。
3.
In order to construct B-spline curves with local shape control parameters,a class of polynomial basis functions with two local shape parametersλ_i,μ_i is presented in this paper.
新曲线不仅具有灵活的局部形状可调性和更强的描述能力,而且可以在不改变曲线G~1连续性和不影响曲线其他各段形状的同时,通过改变局部形状参数对曲线每段的形状进行多种方式的局部调整。
4) shape function
形状函数
1.
Unified expression for each of the performance factors of the several common shape functional ultrasonic transformer;
几种常见形状函数超声变幅杆性能参量的统一表达
2.
Explicit form and efficient computation of RKPM shape functions in terms of moments;
RKPM形状函数的矩式显式表述及快速计算
3.
In order to study the progressivity of GIBR(gradual increasing burning rate) layered propellant with square flake shape,the physical model about the combustion process was put forward,and the shape function was calculated according to the physical model and the parallel layer burning law.
为了研究具有燃速渐增特性和分层结构的方片状发射药的燃烧特性,提出了该药的燃烧物理模型,以此模型建立了相应的形状函数,并对不同外层比例X1、燃速系数比K、药片厚度与宽度之比β条件下相对已燃质量Ψ、相对表面积σ随相对已燃厚度Z的变化进行计算和分析。
5) form function
形状函数
1.
On the hypothesis of a well-distributed cover of thecovering propellant, form functions of the covering propellant havebeen derived in this paper.
该文在假设包覆层厚度均匀一致的条件下,推导包覆火药的形状函数。
2.
A new form function involving parameters β i is presented.
提出了一个确定张拉结构初始几何形状的形状函数· 基于该形状函数 ,通过对结构边界控制点的插值确定张拉结构的初始形状· 该结构形状可随结构的双向张力比和边界控制点的坐标而进行自动调整· 从而给出了几何上可行 ,力学上合理的高精度张拉曲面· 通过有限元方法检查 ,大量例子表明该方法确定的初始形状对于实际常用边界及双向等拉或不等拉张结构均十分理想 ,误差很小
6) locally Lipschitz function
局部Lipschitz函数
1.
In this paper,the solution existence for quasilinear hemivariational inequality was analyzed using the variational method and the nonsmooth critical point theory of the locally Lipschitz function.
我们的方法是变分法及局部Lipschitz函数的非光滑临界点理论。
2.
This paper discusses the generalization of the deformation theorem and its application,and some new critical point theorems of locally Lipschitz functions are given based on some improved classical critical point theorems.
证明了一个形变定理,并由此得到局部Lipschitz函数的几个临界点定理,其结果改进了几个经典的临界点结论。
3.
In the present paper,some minimax theorems of locally Lipschitz functions are given by the Ekeland variational principle and tow critical point theorems are improved.
文章由Ekeland变分原理得到局部Lipschitz函数的几个极大极小定理,并改进了已有的两个临界点定理。
补充资料:函数的局部逼近
函数的局部逼近
local approximation of fimctions
函数的局部逼近【】以川a即rO:应na石阅of加叫出创旧;二oK幼‘。oe nPo6二H二eu,e中yllK颐,益」 集合EC=R“上函数f的一种逼近度量(特别是最佳逼近(比tapproximation)度量).主要问题是研究当m巴E~O时一个函数局部逼近的性态.在某些情形下,可借助函数的局部逼近来刻画被逼近函数的光滑阶,设E。(f;(:,刀))为区间(:,刀)(a蕊:<刀(b)上。次代数多项式对函数fcC【a,b]的最佳逼近.下述结论成立:函数f在la,b]上各点有。十1阶连续导数的充分必要条件是 奥琴兰典真卫一月‘x、,a簇x簇“· 气P一“夕对口~x,,一x,:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条