1) rectangular band congruence
矩形带同余
2) rectangular group congruence
矩形群同余
1.
In chapterⅡ,the rectangular group congruence on the E-inverse semigroup S is first described by means of the rectangular group congruence pairs.
本文在以E-逆半群和E-半群为背景的前提下,研究了E-逆半群的性质、矩形群同余和E-逆半环的性质,以及E-半群上的中间集。
2.
By defining normal congruences and normal subsemigroup,the rectangular congruence pair is constructed to investigate the rectangular group congruences on E-inversive semigroup.
研究同余是研究半群的一种最常用的方法,以下主要通过定义正规同余和正规子半群来构造矩形同余对,从而研究E-逆半群上的矩形群同余。
3) rectangular congruence pair
矩形同余对
1.
By defining normal congruences and normal subsemigroup,the rectangular congruence pair is constructed to investigate the rectangular group congruences on E-inversive semigroup.
研究同余是研究半群的一种最常用的方法,以下主要通过定义正规同余和正规子半群来构造矩形同余对,从而研究E-逆半群上的矩形群同余。
4) rectangular group congruences pair
矩形群同余对
1.
A rectangular group congruences pair was given,and define a binary relation ρ_((ξ,K)) on S was defined.
给定毕竟纯整半群S的矩形群同余对(ξ,K),定义S上的二元关系ρ(ξ,K),证明了如果(ξ,K)是毕竟纯整半群S的矩形群同余对,则(ρξ,K)是S上惟一满足tr(ρξ,K)=ξ,ker(ρξ,K)=K的矩形群同余;反过来,如果ρ是S上的矩形群同余,则(trρ,kerρ)是S的矩形群同余对,并且ρ=(ρtrρ,kerρ)。
5) matrix congruences
矩阵同余
1.
By using matrix congruences,invertibility of matrix over residue class rings and the method to solve the inverse matrix,this paper generalizes Cramer rule of linear equations over real field to linear equations over residue class rings.
本文利用矩阵同余、剩余类环上矩阵可逆及其求逆的方法,将一般数域上线性方程组的Cramer法则推广到剩余类环的线性方程组上。
6) surplus rectangle
剩余矩形
1.
The genetic algorithm and the surplus rectangle algorithm are used for solving the orthogonal packing problem of rectangles.
论文利用遗传算法结合剩余矩形排样法求解矩形件正交排样问题。
2.
The genetic algorithm and the surplus rectangle algorithm are used for solving the orthogonal packing problem of rectangles in this paper.
利用遗传算法结合剩余矩形排样法求解矩形件正交排样问题。
补充资料:带同
1.犹带领。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条