1) E-S unretractive graphs
E-S不可收缩图
2) E-S unretractive
E-S不可收缩性
3) unretractive graph
不可收缩图
1.
Graphs and their endomorphism semigroups are considered and the characterization of E-S unretractive graphs is given in this paper.
本文考虑了图及其自同态半群,给出了E—S不可收缩图的结构刻划。
4) contractible graph
可收缩的图
5) contractible subgraph
可收缩子图
6) noncontractible cycle
不可收缩圈
1.
This paper investigated the cycle base structures of 2-connected outerplanar graphs on the torus and proved that there is a one-to-one correspondence between the minimal cycle base and two nonhomotopic noncontractible cycles with the shortest total length when fw(G)≥2 and ew(G) > m, m = max{li | 1≤i≤f}(l1,…,lf denote the length of all the non-Hamilton facial walks of G).
研究环面上2-连通外可平面图G在嵌入Π的面宽fw(G)≥2时的圈基理论;给出在面宽fw(G)≥2和边宽ew(G)>m,m=max{li|1≤i≤f}时外可平面图G的最小圈基的结构,其中f记为Π的除Hamilton圈外的面迹数,l1,…,lf,为Π的对应面迹的长;并证明了G的最小圈基与其不同伦的两条长度之和最短的不可收缩圈之间存在一一对应。
2.
The results show that the minimum cycle bases on the plane relates to its facial cycles;otherwise,that on the projective plane not only relate to its facial cycles,but also has a one-one correspondence with its noncontractible cycles.
结果表明,平面上的最小圈基仅与面圈有关,射影平面上的最小圈基不仅与面圈有关,还与其不可收缩圈有着一一对应性。
3.
Then we show that there is a one-one correspondence between minimum cycle bases and the shortest noncontractible cycles.
研究了射影平面上2 连通图的圈基结构,并给出了在嵌入的边宽度ew(G)≥5时外可平面图的最小圈基结构,证明了最小圈基与最短不可收缩圈之间的一一对应性。
补充资料:收缩中(晚)期喀喇音-收缩晚期杂音综合征
收缩中(晚)期喀喇音-收缩晚期杂音综合征
即"二尖瓣脱垂-喀喇音综合征"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条