1) contractible edge
可收缩边
1.
The existence theorem of contractible edges in h-connected graphs;
h-连通图中可收缩边的存在定理
2.
The contractible edges of the longest cycle in some 5-connected graphs;
某些5-连通图中最长圈上的可收缩边
3.
Kriesell conjectured that every K, connected graph has a k-contractible edge if the degree sum of any two adjacent vertices is at least 2 5k/4- 1.
Kriesell(2001年)猜想:如果k连通图中任意两个相邻顶点的度的和至少是25k/4-1,则图中有k-可收缩边。
2) k-contractible edge
κ-可收缩边
1.
In this paper we obtainthe result:In a minimally k-connected graph G which dose not contain a subgraph F,if for any vertex x∈V(G)of degree k,there exists an edge incident with x which is not con- tained in any triangle,then G has a k-contractible edge.
本文得到:如果G是极小的κ-连通图,且不合图F,若对于G中任一κ度点力,都存在与力关联的不在三边形中的边,那么G中有κ-可收缩边。
3) 6-contractible edge
6可收缩边
1.
A noncomplete 6 connected graph is called contraction-critical if it has no any 6-contractible edge.
如果6连通图的一条边收缩后使得所得到的图仍是6连通,则这条边称为6可收缩边。
5) edge contraction
边收缩
1.
To overcome such a drawback, we control the edge contraction in order to reduce the computation to measure an accurate geometric error for a highly curved and thin region and to improve the quality of the contraction by adding vertex degree.
针对边收缩算法在计算大曲率面距离公差时计算量大 ,且收缩大曲率面所含的线段时易使关键点发生偏移而引起模型变动过大、简化不够准确的问题 ,本文在边收缩算法基础上提出了加入顶点度控制的算法 ,以减少大曲率面距离公差的冗余计算 ,并提高模型简化质量。
6) contraction of an edge
边的收缩
补充资料:收缩中(晚)期喀喇音-收缩晚期杂音综合征
收缩中(晚)期喀喇音-收缩晚期杂音综合征
即"二尖瓣脱垂-喀喇音综合征"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条