1) essential nilpotence
本质幂零性
2) essential nilpotent ring
本质幂零环
1.
If R is a gr-Jacobson ring(or a gr-prime essential ring,or a gr-essential nilpotent ring),then R is Jacobson ring(or prime essential ring,or essential nilpotent ring).
利用冲积和分次环上的群环2个工具得到了关于分次环上的分次与无分次性的3个定理,即设G是有限群,R是G分次环,如果R是分次Jacobson环(或分次素本质环或分次本质幂零环),则R是Jacobson环(或素本质环或本质幂零环)。
3) essential strongly nilpotent
本质强幂零
1.
It is proved that the prime radical and the left T-nilpotent ideals of Γ-rings are essentialstrongly nilpotent and if a Γ-ring M satisfies tlie a·c· c on principal left annihilators theneach strongly nilideal of M Is essential strongly nilpotent.
讨论Γ-环的T-幂零性与本质强幂零性,给出了Γ-环具备T-幂零性的几个充要条件及充分条件,并证明Γ-环的素根、T-幂零理想及满足主左零化子升链条件的Γ-环的每一个强诣零理想是本质强幂零。
4) eigennilpotent
本征幂零
1.
Eigenprojections and eigennilpotents of a discrete operator;
离散算子的本征投影与本征幂零
5) nilpotent
[英][nil'pəutənt] [美][nɪl'potənt]
幂零性
1.
Burnside asserts,if any sylow p-subgroup P of a finite G lies in the center of its normalizer,then G is p-nilpotent.
群论研究的一个重要问题是对有限群的p—幂零性对有限群结构的影响。
2.
Because the solution and nilpotent are very important to every algebra and have some important effect,we give the definition of idea and imitate Lie algebra to study q-Lie algebra\'s solution and nilpotent.
有了理想,我们就可以仿照李代数去研究q-李代数的可解性与幂零性。
6) Nilpotency
['nil,pəutənsi]
幂零性
1.
One of the important problems in the theory of finite groups is to study the effect of nilpotency on the finite groups.
对于有限群的幂零性的研究已受到很多群论专家的关注。
补充资料:幂零Lie代数
幂零Lie代数
Lie algebra, nilpotent
幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条