1) nonsingular cycles
非奇异圈
2) nonsingular
['nɔn'siŋɡjulə]
非奇异
1.
In this paper,we firstly characterize the form of transformation T which preserves both minimal rank and a nonsingular bilinear function from Mn(F) to itself when n≥3.
文中首先刻画n≥3时,Mn(F)到其自身的同时保持极小秩和某一非奇异双线性函数的变换T的形式,然后证明M2(F)到其自身的保持极小秩的线性变换的形式。
2.
In this paper we study the nonsingular discrete Dirichlet boundary value problem for the second-order differential systems one-dimension P-Laplacian,we prove the existence of solutions for these BVPs by using the Leray-Schauder nonlinear alternative theorem and Schauder cone fixed-point theorem.
本文主要研究二阶微分系统一维p-Laplacian非奇异离散Dirichlet边值问题,利用Leray-Schauder非线性抉择定理和Schauder不动点定理证明了此问题的解的存在性定理,推广并改进了已有结果。
3) nonsingularity
['nɔn,siŋɡju'læriti]
非奇异性
1.
The definition of the nonsingularity is presented based on analyzing digital discrete chaotic sequence.
分析结果表明这类算法产生碰撞的原因是其对混沌映射的数字化导致混沌序列的奇异性,因此必须谨慎选择混沌映射的数字化方法以保证混沌序列的非奇异性。
2.
Based on the kernel estimating theory of nonlinear semiparametric models under the least-square principle,this paper proves the nonsingularity of coefficient matrix of normal equation in least-square estimator of non-linear semiparametric models under certain condition.
本文基于非线性半参数模型最小二乘核估计的迭代解法,证明了非线性半参数模型最小二乘类估计法方程系数阵在一定条件下的非奇异性。
3.
The new nonsingularity criteria of matrices and the equivalent representation of M-matrices are presented in this paper.
本文给出了矩阵非奇异性的判定准则和M-矩阵的等价表征,所得结果推广了最近的相关结论。
4) nonsingularity
['nɔn,siŋɡju'læriti]
非奇异
1.
This paper presents the necessary and sufficient conditions for the nonsingularity of feedback shift registers on the q element finite field, and shows the necessary and sufficient conditions for the nonsingularity of feedback shift registers on q=3,4,5 with the theory of the Groebner basis.
本文给出q元有限域上的反馈移位寄存器非奇异性判定的充分必要条件,并利用Groebner基理论对定理给出的条件进行约化,给出了q=3,4,5时任意次反馈函数非奇异性的充要条件。
5) nonsingular matrix
非奇异阵
6) nonsingular modules
非奇异模
1.
PS ring is characterized using nonsingular modules and minijective modules.
利用非奇异模、极小内射模 ,给出 PS环的一些刻画 ,同时刻画了半单环 ,指出右 YJS环、右 DS环与右 PS环之间的关系及它们等价的条
补充资料:非奇异边界点
非奇异边界点
non-angular boundary point
非奇异边界点[咖峋吧.妞加训山仔州吐;Heoc浦明印aHH二功.],正则边界点(肥多血r场即山叮point) 复变量艺的单值解析函数f(z)的定义域D的可达边界点(ahainable boUnda甲point)心,使得f(:)沿D内任一到达心的路径都有一个到达〔的解析延拓(肛司州c con血uation).换言之,非奇异边界点是可达的,但不是奇异的.亦见解析函数的奇点(51理润比point).E.瓜.0叨鱿衅B撰【补注】注意D的边界上的同一个点可以引起一些不同的可达边界点,其中某些可能是奇异的,另一些是正则的.例如,考虑区域D二C\(一的,01以及函数f(:)“(h(习一们)一‘,其中h是晚公的主值.这时在一1‘之上”有两个可达边界点:一个是奇异的,对应于沿:二一1十“(0蕊:(l)接近一1;一个是正则的,对应于沿么二一l一it(O(t(1)接近一1.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条