1) nonsingular matrix
非奇异矩阵
1.
In this paper,the singular value of nonsingular matrix A is ordered,By the use of the arithmetic-geometric mean inequality and the properties of singular value of matrices,We obtain some inequalities of sum and product of the singular value.
本文给出非奇异矩阵A的奇异值的从大到小的排列,利用代数-几何均值不等式以及矩阵奇异值的性质,得到矩阵奇异值和与积的一些不等式,而这些不等式仅仅用到k,l,n矩阵的迹与行列式。
2) nonsingular matrices
非奇异矩阵
1.
And an extension of the new inequality established is given when both A and B are nonsingular matrices of order \$n\$.
当A,B为n阶非奇异矩阵时,给出了新创建不等式的一个推广。
3) non-singular matrix
非奇异矩阵
1.
If A is non-singular matrix,the equation Xm=A has finitely many solutions.
当矩阵是非奇异矩阵时,它的m次矩阵根是有限个,特别是一个非奇异的Jordan块的m次矩阵根有m个。
4) nonsingular H-matrix
非奇异H-矩阵
1.
A simple criterion for nonsingular H-matrix;
非奇异H-矩阵的一个简捷判据
2.
Some Discriminant Conditions for Nonsingular H-matrix;
非奇异H-矩阵的几个判别条件
3.
Notes on "Local α-double diagonally dominance and sufficent conditions of nonsingular H-matrix";
关于“局部α-双对角占优与非奇异H-矩阵的充分条件”一文的注记
5) nonsingular F-matrix
非奇异F-矩阵
6) nonsingular M-matrix
非奇异M-矩阵
1.
A direct algorithm for distinguishing nonsingular M-matrix;
判定非奇异M-矩阵的一个直接算法(英文)
2.
If the matrices is a nonsingular M-matrix,the convergence for the AOR iterative method of precondition is better than it of the linear system,if a matrices is a irreducibly nonsingular M-matrix,the convergence is strictly accelerated.
对AOR迭代法解线性方程组,讨论在一类新的预条件下AOR迭代法收敛性的加速,证明在非奇异M-矩阵下该预条件加速AOR迭代法的收敛性,而在非奇异不可约M-矩阵下能严格加速AOR迭代法的收敛性。
3.
Employing nonsingular M-matrix and Lyapunov functional method,some new sufficient conditions are derived for checking global exponential stability of the HFCNNs with constant and time-varying delays.
通过引入非奇异M-矩阵和使用Lyapunov泛函方法,得到了带有常时滞和变时滞的高阶模糊细胞神经网络全局指数稳定性的充分条件。
补充资料:非奇异矩阵
非奇异矩阵
non-angular matrix:
非奇异矩阵工叨一由卿面r口.翻玩;Heoco6e皿四M帅料a],非退化矩阵(non吐粤冠盼te“坦tr议) 其行列式不等于零的方阵(闪业祀n.让议).对于一个域上的方阵A,非奇异性等价于下述条件之一:l)A是可逆的;2)A的诸行(列)是线性无关的;3)A可以通过初等行(列)变换化为单位矩阵. 0 .A.价aHoBa撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条