1) higher power of theannihilation operator
湮没算符高幂
2) higher powers of a annihilation operator
湮没算符高次幂
3) higher power of the annihilation operator
湮没算符的高次幂
4) annihilation operator
湮没算符
1.
The generalized eigenstates of the higher power of the annihilation operator for a non harmonic oscillator are constructed It is found that they form a complete Hilbert space.
构造了非简谐振子湮没算符高次幂的广义本征态,发现它们构成完备Hilbert空间。
2.
The inverse operators of creation and annihilation operators for a harmonic oscillator are introduced.
本文引入谐振子产生算符和湮没算符的逆算符,导出了它们在Fock空间的表达式,并给出了一些简单应用。
3.
The eigenstates of the second power of the annihilation operator of the twoparameter deformed harmonic oscillator are constructed, and their completeness is demonstrated in terms of the qs-integration.
明显构造了双参数形变谐振子湮没算符二次幂的本征态,并利用qs积分给出了其完备性的证明。
5) supersymmetric annihilation operator
超对称湮没算符
6) bose annihilation operator
玻色湮没算符
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条