1) covariance characteristics
协方差特性
2) covariance feature
协方差特征
3) auto-covariance feature
自协方差特征
4) stock relations
协方差相关性
6) Eigen-decomposition of the covariance matrix
协方差矩阵特征值分解
补充资料:协方差阵
协方差阵
covanance matrix
协方差阵【cm.dan份ma州x;曰.例...叱幽旧M.,阅a] 若干个随机变量,成对取其协方差,所构成的矩阵.更确切地,k维向量X=(x,,…,习的协方差阵为方阵艺=〔【(火二〔X)(浑‘E幻T],这里〔X=(E戈,…,〔勒丁是均值向量.协方差阵的分量是 aij=日(不一E戈Xxj一Exjll=cov(Xi,xj), i,j=l,…,k,而当i=j时,它与0戈(“var(茂》相同(即戈的方差位犷主对角线_!一).协方差阵是一个对称半正定阵.若协方差阵为正定的则X的分布为非退化的;否则为退化的.对随机向量血言,协方差阵的作用,正如随机变量的方差.如果随机变量X,,…,戈的方差都是1.则X二(刃、,一、戈)的协方差阵与其相关阵(mrrelation matrix)相同. 样本厂”,…,砂、的样本协方差阵,由方差和协方差的估计量构成二 S一汁:户l‘X(用’一见‘X‘”一习了,这里X‘m,如二l,.。)是独立同分布的k维随机向量,而-了是厂,j、…,户’的算术平均.如果丫‘、,二,厂”,的分布是具协方差阵艺的多维且态分布,则S(n一l)/。是艺的最大似然估计量;在这一场合,矩阵(n一飞)S各元的联合分布称为Wi劝斌分布(Wishart distrlbuti(,n).它是多元统计分析中的基本分布之一,借助于它可检验有关协方差阵艺的假设.A.Bfl阳xopoB撰陈希孺译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条