说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正交的基础解系
1)  Orthogonal fundamental solution
正交的基础解系
2)  normal orthogonal system of solution
正交基础解系
3)  basic solution
基础解系
1.
On the basis of HMO theory, this article introduces a basic solution method to calculate wave function of degenerate energy level for conjugated molecules, and some examples were given in it.
本文利用基础解系方法,用HMO法确定共轭分子简并能级波函数,并给出了几个典型实例。
2.
In this paper, we study the general solutions, basic solutions and particular solutions of linear equations by elementary row transformations and column transformations method, and we also discuss the judgment method of solutions.
研究了用初等行变换和列交换求线性方程组通解、基础解系、特解的简便方法 ,讨论了解的判定方
4)  basic system of solution
基础解系
1.
This paper introduces the concept of basic system of solutions for the nonhomogeneous linear equation set, and further discusses its structure and transition matrix.
在非齐次线性方程组中引入基础解系的概念,并在此基础上进一步讨论了解的结构,以及基础解系间的 过渡矩阵。
5)  system of basic solutions
基础解系
1.
This paper proves the existence theorem of the system of basic solutions for the right homogeneous linear equation sets over a non-commutative principal ideal domain R and gives the representation of the solutions for the right linear equation sets over R.
证得非交换主理想整环R上右齐次线性方程组基础解系存在定理,给出R上右线性方程组解的表示。
2.
This note presents a method to solve a homogeneous system of linear equations by giving linear independent vectors as a system of basic solutions.
给出求以已知一组线性无关的向量为基础解系的齐次线性方程组的方法。
6)  basic set of solutions
基础解系
1.
The author of the article studied the increasing character about the solutions of the matrix equation AX=0,with the character,the author gave out the method of solving power matrix equation A~mX=0,by increasing a maximum suitably increasing basic set of solutions of AX=0,and solved the difficulty in solving A~mX=0,if the power exponent m is biggish.
研究了矩阵方程AX=0解的增长性,并应用解的增长性,通过增长AX=0的一个极大可增长的基础解系的办法,得到了幂矩阵方程AmX=0的基础解系,从而解决了因幂指数m较大以致AmX=0难以求解的问题。
2.
It is easy to prove some propositions on rank of matrix or vectors by using the relations to rank of the coefficient matrix of homogeneous system of linear equations AX=0 and its basic set of solutions.
利用齐次线性方程组 AX =0的系数矩阵的秩和它的基础解系之间的关系 ,比较容易地证明许多有关矩阵秩或向量组秩的一些命题 。
3.
In this paper, a inverse theorem about linear homogeneous equation systems existing basic set of solutions is given and proved.
本文给出了齐次线性方程组存在基础解系的逆定理及其证明 ,同时也给出了由线性无关向量组构造齐次线性方程组的一般方法步骤 。
补充资料:规范正交系


规范正交系
orthonormal system

规范正交系【倪劝扣即m司卑加n;opTo皿oPMHp0BallH阳c“c犯Ma} 1)规范正交向量系(oltllonorn司s声temof从戈tors)是赋内积(·,·)的Euc以(H亚t又d)空间中满足如下条件的I句量集{x二}:(x。,x,)二0如果:转声(正交性),(x二,x二)二l(规范性). M.H.B成口exoBcKJ说撰 2)规范正交函数系(o到五0加m笼日s”记m offi川c-tio招)是在空间口(X,S,川中既正交又规范的U(X,S,拜)中的函数集{毋,},即 。、一、,fo,i裤j, l甲:(x)乒,(x)d召二弋‘. ;一tl,!=了(见规范系(normal劝习s”teTn),正交系(叭ho即nals够tem)).在数学文献中,术语“正交系”经常指的是“规范正交系”;在研究一个给定的正交系时,它是否规范并不总是至关紧要的.但是,如果函数系是规范的,则对于某些借助于系数{c、}的性质来讨论级数 艺c*职*(x) k昌l收敛性的定理就有可能得到比较清晰的公式,这方面的一个例子是Riesz一凡Cller定理(Ri留z一Fiscl祀r theo-~):设{伊*}澡1是尸[a,b1中的规范正交系,则级数 艺c*职*(x) k .1依厂〔a,b]中的度量收敛,当且仅当 艺re、!,<二. k二I
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条