1) Symmetric scale function
对称的尺度函数
2) dual scaling functions
对偶尺度函数
1.
Optimal approximation order and optimal smoothnessof a multivariate dual scaling functions;
多元对偶尺度函数的最优逼近阶和最优光滑性
3) symmetric function
对称函数
1.
Synthesis of symmetric functions based on RM type universal logic module ULM3;
基于RM型通用门ULM3的对称函数综合
2.
New method of detecting symmetry of CRM type symmetric function in OR-coincidence algebraic system based on tabular method;
基于表格法的CRM型对称函数检测
3.
Denotation and application for d_j-Map of symmetric function.;
对称函数的d_j图表示及其应用
4) symmetric functions
对称函数
1.
This paper analyses the characteristics of the symmetric functions in the field GF (2~m),derives the relations of a class of usual determinants and the Vandermonde determi-nants.
分析了GF(2~m)上对称函数的特点,并且导出了一类常用的行列式与范德蒙德行列式的关系式,对于研究编码理论有一定的参考意义。
2.
In this paper,the author gives an explicit LU factorization and 1-banded factorization of the generalized Vandermonde matrix by using symmetric functions.
主要讨论如何利用对称函数构造证明文献[1]给出的广义范德蒙矩阵显式LU分解定理。
3.
An explicit LU factorization and 1-banded factorization of the generalized Vandermonde matrix are given by using symmetric functions.
利用对称函数给出了广义Vandermonde矩阵的显示LU分解和带宽为1的分解,从而可将广义Vandermonde矩阵表示为n个带宽为1的下三角矩阵和n个带宽为1的上三角矩阵的乘积。
5) orthogonal uni-scaling function with dilation factor a
a尺度正交的单尺度函数
6) orthogonal multiscaling function with dilation factor a
a尺度正交的多尺度函数
补充资料:对称函数
对称函数
symmetric function
对连续函数,全纯函数以及C‘函数(光滑函数)也成立.例如,若/:R”一R为对称的光滑函数,则存在光滑函数夕:R”一R使 f(x.,‘二,x。)一g(51(x).…,S。(兀))(【All).更一般地,设G为线性作用于R”上的紧群,p,,‘二,p,。为不变量环Rtx,,…,x。护的齐次生成元.又设厂R阴一R”为相应的映射,x}~(pl(x),一,户n,(x)).那么 户:C‘£(R”’))C“(R”)G为满射(【A2」),这是光滑不变函数的基本定理(加n-da此nlal 11长幻】℃m for sln00th invariant funetlons).这结果依赖于Ma堪ninge预备定理(Malgnlll罗prepal习tion山印~)(C‘预备定理,光滑预备定理),W亡iers七氏‘s预备定理的C〔类比(见Wde眨由,岛定理(W匕既IJ花155theoren14)).【补注】对称多项式是初等对称函数的多项式这一定理也称为Newton定理(Newton theorem).类似的结论对称函数t甲lllne州c6.l团on;c枷Me邓“”ec~中担K-i,一,,l 在自变量任意置换下不变的函数.下面是对称函数的一些例子:x.+X:+“‘+x。,为凡”‘戈, .、恩、,.x;,,~(;、,…,二。), 义l+…十戈,(mod川),在卜进制下由单数字组成的任意集之和,以及“选举”函数—自变量仅取l(“同意”)和O(“反对”),而函数值当自变量取l超过半数时为1否则为0的这样的函数.常数函数和一元函数是对称函数妓简单的例子. 任意非常数的对称函数本质上依赖于它所有的变量.因此加入除常数外的非本质变量将使函数不对称,而去掉它将会使之对称.所以对称函数的概念依赖于它所有变量的精确表达.判别函数f(x,,…,戈。)为对称的一个简单准则是,下面两个等式同时成立: /(义.,.、2 .x;,…,戈)=./(义2,二.,x3,·“,x。). /( x.,x:,二3,…,戈,)二j(气,x、,兀2,…,x。一,),或以下,,一1个等式成立:厂(戈.,…,戈,戈。.,…,文,)二f、(x,,…,x、、,x:,…,x。)以及 /(x,,戈:,…,义。_,,戈)二f(无。,x:,…,x,一,,x,). 对称函数与对称多项式(s势nmetncpol卯0而al)有一定的联系(在特征为0的域上的)任何对称有理函数必为两个对称多项式之商,任何B心ole对称函数,在含有同样多个单位元的自变量集上取相同值.这些函数在数学控制论及它的应用,尤其是在算术和其他运算的模式实现中都起着重要的作用.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条