1) Semiθ-open
半θ-开集
2) θ-open set
θ-开集
1.
In this paper θ-Ti(i=0,1,2,3,4)separation concepts on general topology are introduced by θ-open sets.
利用θ-开集引入了拓扑空间的θ-Ti(i=0,1,2,3,4)分离性概念,给出了它们的刻画,证明了它们都是θ-拓扑性质和拓扑性质,它们与T分离性的关系为
3) θ-open(closed)set
θ-开(闭)集
4) θ-open L-set
θ-开L-集
1.
A notion of θ-closedness is presented in L-topological spaces by means of θ-open L-sets and their inequality,where L is a complete DeMorgan algebra.
在L-拓扑空间中借助于θ-开L-集和它们的不等式给出了θ-闭性的定义,这里L是完备的DeMorgan代数。
5) semi-open set
半开集
1.
Based on the literatures,the properties of SH-connectedness in the topological spaces were discussed by using the properties of semi-open sets of the semi-topological spaces.
在文献[1-5]的基础上,利用半拓扑空间中的半开集性质,讨论了拓扑空间的SH-连通性。
2.
Mian results : If X is a S-cmpactness space, and X has finite semi-open set interrec- tion property then(1)If X is a S_2-space, then X is a S_3 *-space; (2)If X is a S_2-space, then X is a S_4 *- space; (3) If X is a S_3 * -space, then X is a S_4 * -space.
主要结论:设X是-S紧空间,且具有有限半开集可交性,则(1)若是S_2-空间,则X是S_3*-空间;(2)若是S_2-空间,则X是S_4*-空间;(3)若是S_3*-空间,则X是S_4*-空间。
3.
Further more the relationship of q-open sets to semi-open sets and pre-open sets are discussed.
给出了拟开集的定义及其相应性质,讨论拟开集同半开集,准开集,α-集之间的关系。
6) semi-open sets
半开集
1.
It is that the all δ-open sets are open sets,all open sets are α-open sets,α-open sets are semi-open sets and preopen sets,semi-open sets or preopen sets are β-open sets.
在一般拓扑空间中讨论了抽象集合的概念,研究了其性质,得出如下结论,即:所有的δ-开集都是开集,所有开集又都是α-开集,α-开集是半开集且预开集,半开集或预开集是β-开集,反之则不成立。
2.
In this paper, we introduced concepts on semi-arcwise connected space and semi-arcwise connection by the concepts of semi-open sets and semi-continuous mapping, pobularized the concepts on arcwise connected spaces.
文章由半开集、半连续概念引入半弧连通空间和半弧连通概念,推广了弧连通空间概念。
3.
On this paper,we introduced concepts on \$s\$-arc connected space and \$s\$-arc connected by the theory of semi-open sets.
文章由半开集理论 ,引入s-弧连通空间和s-弧连通概念 ,证明了s -弧连通空间是半拓扑性质 ,s -弧连通是等价关系 。
补充资料:半开门儿
〈方〉指暗娼。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条