1) θ-closed set
θ-闭集
1.
By θ-open sets and θ-closed sets,the notions of θ-bitopological space and a new compactness called θ-pairwise compactness are introduced in L-bifuzzy topological space.
以θ-开集和θ-闭集为工具,在L-双fuzzy拓扑空间中引入双θ-拓扑空间及一种新的紧性,即θ-配紧性,揭示了θ-配紧性与B-配紧性之间的联系。
2) θ-closed
θ一闭集
1.
In this paper,θ- open and θ-closed are introduced in Topological spaces.
本文在拓扑空间中引入θ一开集与θ一闭集的概念,讨论了T2空间和正则空间的性质,得到了拓扑空间是T2空间当且仅当每一单点集是θ一闭集以及拓扑空间是正则空间当且仅当每一闭集是θ一闭集。
3) θ-open(closed)set
θ-开(闭)集
4) θ-invariant closed set
θ-不变闭子集
5) θ-closure
θ-闭包
1.
In this paper,the concepts of θ-closure,θinterior,Rθ-neighborhood system and θ-continuous functions are introduced in I-fuzzy topological spaces by R-neighborhood system,and discuss some properties of them.
利用R-邻域系在I-fuzzy拓扑空间中定义θ-闭包、θ-内部、Rθ-邻域系和θ-连续函数,并且研究它们的一些性质。
2.
Obviouslyθ-closure can not uniquely determine the topology of a space , then what is the influence ofθ- closure on the topology of a space? We study this problem in terms ofθ- convergence of nets and filters, with convergence theory as a tool .
Dikranjan与Giuli引入了一种(?)ech闭包算子—θ-闭包,由此给出了一类具有弱紧性的空间—S(n)-θ-闭空间。
6) pre-θ closure
拟θ闭包
补充资料:闭集
闭集
dosed set
闭集ld吹d肥t买姗.叮l说M“馏ec佃],拓扑空间中的 含有它的所有极限点〔见集合的极限点(】imjtpolnt of a set)、的集合.于是,闭集的补集的所有点都是内点,所以闭集可定义为开集的补集.闭集的概念是把拓扑空间定义为具有满足下列公理的特定集合系统〔所谓闭集)的作空集X的基础:X本身和空集是闭集;任意个闭集的交是闭集;有限个闭集的并是闭集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条