1) center coordinates operator
圆心坐标算符
1.
Simultaneous eigenfunctions of Hamiltonian and center coordinates operator ofa charged particle in uniform magnetic field are obtained.The influence of using differentgauges on wavefunction is made out concretely.
给出均匀磁场中带电粒子的哈密顿量和圆心坐标算符的共同本征函数,可具体看出磁势取不同规范时对波函数的影响。
2) coordinate operator
坐标算符
1.
A calculation method of coordinate operator matrix element of harmonic oscillator;
谐振子任意次幂坐标算符矩阵元的一种计算方法
2.
Using the theoretics and properties of squeezed coherent state,the matrix elements of any power of coordinate operator for harmonic oscillator is deduced; and the result is discussed.
利用压缩相干态的理论和有关性质,导出了压缩相干态下谐振子任意次幂的坐标算符矩阵元的表达式,并对所求的结果进行了讨论。
3.
Matrix element of coordinate operator ~l of harmonic oscillator is discussed by using coherent state and normal product.
利用相干态和正规乘积对谐振子任意次幂坐标算符^Xl矩阵元进行了讨论,导出了计算^Xl矩阵元的一般公式,为处理谐振子的微扰问题提供了一种新的方法。
3) central coordinate of circle
圆心坐标
4) initial coordinate operator
初坐标算符
1.
In this paper the initial coordinate operator and the initial momentum operator are taken separately as the complete set of dynamical variables for a two dimensional oscillator and the corresponding non stationary state wavefunctions of the two dimensional oscillator are derived.
引入了初坐标算符和初动量算符为二维谐振子的力学量完全集来求解薛定谔方程 ,得到了二维谐振子的 4类非定态波函
2.
In this paper the initial coordinate operator and the initial momentum operator are taken separately as the complete set of dynamical variables for a linear oscillator,and the corresponding non stationary state wavefunctions of the linear oscillator are derived.
引入初坐标算符和初动量算符为线性谐振子的力学量完全集,求解薛定谔方程,可得到线性谐振子的两类非定态波函数。
5) center coordinate of arc
圆弧圆心坐标
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条